cover
Contact Name
Nurul Fazriah
Contact Email
jiki@cs.ui.ac.id
Phone
-
Journal Mail Official
jiki@cs.ui.ac.id
Editorial Address
"Faculty of Computer Science Universitas Indonesia Kampus Baru UI Depok - 16424"
Location
Kota depok,
Jawa barat
INDONESIA
Jurnal Ilmu Komputer dan Informasi
Published by Universitas Indonesia
ISSN : 20887051     EISSN : 25029274     DOI : 10.21609
Core Subject : Science,
Jurnal Ilmu Komputer dan Informasi is a scientific journal in computer science and information containing the scientific literature on studies of pure and applied research in computer science and information and public review of the development of theory, method and applied sciences related to the subject. Jurnal Ilmu Komputer dan Informasi is published by Faculty of Computer Science Universitas Indonesia. Editors invite researchers, practitioners, and students to write scientific developments in fields related to computer science and information. Jurnal Ilmu Komputer dan Informasi is issued 2 (two) times a year in February and June. This journal contains research articles and scientific studies. It can be obtained directly through the Library of the Faculty of Computer Science Universitas Indonesia.
Arjuna Subject : -
Articles 247 Documents
PENGEMBANGAN METODE GRAPH COLORING UNTUK UNIVERSITY COURSE TIMETABLING PROBLEM PADA FAKULTAS TEKNOLOGI INFORMASI UNIVERSITAS TARUMANAGARA Lely Hiryanto; Jacklin Sinthia Thio
Jurnal Ilmu Komputer dan Informasi Vol 4, No 2 (2011): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1126.06 KB) | DOI: 10.21609/jiki.v4i2.167

Abstract

University Course Timetabling Problem merupakan proses penjadwalan mata kuliah di sebuah universitas yang hasilnya diusahakan seoptimal mungkin untuk tidak saling berbenturan dengan batasan-batasan dan syarat-syarat (constraints) tertentu. Dalam menentukan penjadwalan berbasis perhitungan, salah satu metode yang dapat digunakan adalah Graph Coloring. Graph Coloring merupakan merupakan metode yang paling sederhana dan dapat digunakan untuk menentukan penjadwalan yang memiliki berbagai macam constraints. Pada penelitian ini, peneliti mengusulkan pengembangan dari metode Graph Coloring yang ada untuk membuat penjadwalan mata kuliah yang optimal dengan memertimbangkan berbagai macam constraints. Pengembangan ini diujicobakan ke penjadwalan mata kuliah di Fakultas Teknologi Informasi Universitas Tarumanagara (FTI Untar). Hasil percobaan menunjukkan bahwa pengembangan metode Graph Coloring memberikan hasil penjadwalan yang memenuhi rata-rata 93% seluruh constraints yang ditentukan. Rata-rata 7% pelanggaran constraints dikarenakan keterbatasan jumlah ruang dan total slot waktu kuliah, serta permintaan jadwal tertentu oleh dosen. University Course timetabling problem is the process of scheduling courses at a university whose results are optimally arranged to not collide with the limits and conditions (constraints) specified. In determining the scheduling komputatif, one method that can be used is the Graph Coloring. Graph Coloring is the simplest method and can be used to determine which have a variety of scheduling constraints. In the present study, the researcher proposes the development of the existing methods of Graph Coloring to make optimal scheduling of courses taking into account various constraints. This development was tested to the scheduling of courses in the Faculty of Information Technology University Tarumanagara (FTI Untar). The experimental results show that the development of methods of Graph Coloring deliver results that meet the scheduling of an average 93% of all the specified constraints. Average of 7% violation constraints due to limitations of space and the total number of time slots in college, and request a specific schedule by the lecturer.
MULTI-CLASS REGION MERGING FOR INTERACTIVE IMAGE SEGMENTATION USING HIERARCHICAL CLUSTERING ANALYSIS Khairiyyah Nur Aisyah; Syadza Anggraini; Novi Nur Putriwijaya; Agus Zainal Arifin; Rarasmaya Indraswari; Dini Adni Navastara
Jurnal Ilmu Komputer dan Informasi Vol 12, No 2 (2019): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (893.612 KB) | DOI: 10.21609/jiki.v12i2.757

Abstract

In interactive image segmentation, distance calculation between regions and sequence of region merging is being an important thing that needs to be considered to obtain accurate segmentation results. Region merging without regard to label in Hierarchical Clustering Analysis causes the possibility of two different labels merged into a cluster and resulting errors in segmentation. This study proposes a new multi-class region merging strategy for interactive image segmentation using the Hierarchical Clustering Analysis. Marking is given to regions that are considered as objects and background, which are then referred as classes. A different label for each class is given to prevent any classes with different label merged into a cluster. Based on experiment, the mean value of ME and RAE for the results of segmentation using the proposed method are 0.035 and 0.083, respectively. Experimental results show that giving the label on each class is effectively used in multi-class region merging.
STUDY COMPARISON BACKPROPOGATION, SUPPORT VECTOR MACHINE, AND EXTREME LEARNING MACHINE FOR BIOINFORMATICS DATA umi mahdiyah; M. Isa Irawan; Elly Matul Imah
Jurnal Ilmu Komputer dan Informasi Vol 8, No 1 (2015): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (324.272 KB) | DOI: 10.21609/jiki.v8i1.284

Abstract

A successful understanding on how to make computers learn would open up many new uses of computers and new levels of competence and customization. A detailed understanding on information- processing algorithms for machine learning might lead to a better understanding of human learning abilities and disabilities. There are many type of machine learning that we know, which includes Backpropagation (BP), Extreme Learning Machine (ELM), and Support Vector Machine (SVM). This research uses five data that have several characteristics. The result of this research is all the three investigated models offer comparable classification accuracies. This research has three type conclusions, the best performance in accuracy is BP, the best performance in stability is SVM and the best performance in CPU time is ELM for bioinformatics data.
A CHANGE DETECTION AND RESOURCE-AWARE DATA SENSING APPROACHES FOR IMPROVING THE REPORTING PROTOCOL MECHANISM FOR MOBILE USER annisaa sri indrawanti; Waskitho Wibisono
Jurnal Ilmu Komputer dan Informasi Vol 8, No 2 (2015): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (477.871 KB) | DOI: 10.21609/jiki.v8i2.307

Abstract

Update mechanism is an important process that relays information to the end-user by sending the data from the client to the server. There are several kinds of update mechanism that are used, one of them is reporting protocol. Reporting protocol sends the data from the client to the server continuously in a certain time interval. Reporting protocol occasionally sends the same information repeatedly to the end-user and sometimes the data aren’t needed by the end-user. This is an issue, because it can cause a large amount of bandwidth usage. In this research, we have developed an improvement of the reporting protocol mechanism for mobile user using change detection and resource-aware data sensing to minimize the bandwidth and resource usage. The improvement of reporting protocol that is implemented reduces frequency of data transfer with the prediction of the changes in user activity and position. The prediction is used as a trigger when the data is about to be sent. The results have shown that the adaptive reporting protocol could improve the performance of the overall reporting protocol. This is shown by the improvement of the bandwidth efficiency up to 36-97%, memory efficiency at 1.5-6% and battery efficiency at 7-13%.
LINKEDLAB: A DATA MANAGEMENT PLATFORM FOR RESEARCH COMMUNITIES USING LINKED DATA APPROACH Fariz Darari; Ruli Manurung
Jurnal Ilmu Komputer dan Informasi Vol 5, No 1 (2012): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1199.948 KB) | DOI: 10.21609/jiki.v5i1.181

Abstract

Data management has a key role on how we access, organize, and integrate data. Research community is one of the domain on which data is disseminated, e.g., projects, publications, and members.There is no well-established standard for doing so, and therefore the value of the data decreases, e.g. in terms of accessibility, discoverability, and reusability. LinkedLab proposes a platform to manage data for research communites using Linked Data technique. The use of Linked Data affords a more effective way to access, organize, and integrate the data. Manajemen data memilki peranan kunci dalam bagaimana kita mengakses, mengatur, dan mengintegrasikan data. Komunitas riset adalah salah satu domain dimana data disebarkan, contohnyadistribusi data dalam proyek, publikasi dan anggota. Tidak ada standar yang mengatur distribusi data selama ini.Oleh karena itu,value dari data cenderung menurun, contohnya dalam konteksaccessibility, discoverability, dan usability. LinkedLab merupakan sebuah usulanplatform untuk mengelola data untuk komunitas riset dengan menggunakan teknik Linked Data. Kegunaan Linked Data adalah sebuah cara yang efektif untuk mengakses, mengatur, dan mengitegrasikan data.
Performance Comparison Between Support Vector Regression and Artificial Neural Network for Prediction of Oil Palm Production Mustakim Mustakim; Agus Buono; Irman Hermadi
Jurnal Ilmu Komputer dan Informasi Vol 9, No 1 (2016): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (668.754 KB) | DOI: 10.21609/jiki.v9i1.287

Abstract

The largest region that produces oil palm in Indonesia has an important role in improving the welfare of society and economy. Oil palm has increased significantly in Riau Province in every period, to determine the production development for the next few years with the functions and benefits of oil palm carried prediction production results that were seen from time series data last 8 years (2005-2013). In its prediction implementation, it was done by comparing the performance of Support Vector Regression (SVR) method and Artificial Neural Network (ANN). From the experiment, SVR produced the best model compared with ANN. It is indicated by the correlation coefficient of 95% and 6% for MSE in the kernel Radial Basis Function (RBF), whereas ANN produced only 74% for R2 and 9% for MSE on the 8th experiment with hiden neuron 20 and learning rate 0,1. SVR model generates predictions for next 3 years which increased between 3% - 6% from actual data and RBF model predictions.
LOCAL BINARIZATION FOR DOCUMENT IMAGES CAPTURED BY CAMERAS WITH DECISION TREE Naser Jawas; Randy Cahya Wihandika; Agus Zainal Arifin
Jurnal Ilmu Komputer dan Informasi Vol 5, No 1 (2012): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1763.518 KB) | DOI: 10.21609/jiki.v5i1.183

Abstract

Character recognition in a document image captured by a digital camera requires a good binary image as the input for the separation the text from the background. Global binarization method does not provide such good separation because of the problem of uneven levels of lighting in images captured by cameras. Local binarization method overcomes the problem but requires a method to partition the large image into local windows properly. In this paper, we propose a local binariation method with dynamic image partitioning using integral image and decision tree for the binarization decision. The integral image is used to estimate the number of line in the document image. The number of line in the document image is used to devide the document into local windows. The decision tree makes a decision for threshold in every local window. The result shows that the proposed method can separate the text from the background better than using global thresholding with the best OCR result of the binarized image is 99.4%. Pengenalan karakter pada sebuah dokumen citra yang diambil menggunakan kamera digital membutuhkan citra yang terbinerisasi dengan baik untuk memisahkan antara teks dengan background. Metode binarisasi global tidak memberikan hasil pemisahan yang bagus karena permasalahan tingkat pencahayaan yang tidak seimbang pada citra hasil kamera digital. Metode binarisasi lokal dapat mengatasi permasalahan tersebut namun metode tersebut membutuhkan metode untuk membagi citra ke dalam bagian-bagian window lokal. Pada paper ini diusulkan sebuah metode binarisasi lokal dengan pembagian citra secara dinamis menggunakan integral image dan decision tree untuk keputusan binarisasi lokalnya. Integral image digunakan untuk mengestimasi jumlah baris teks dalam dokumen citra. Jumlah baris tersebut kemudian digunakan untuk membagi citra dokumen ke dalam window lokal. Keputusan nilai threshold untuk setiap window lokal ditentukan dengan decisiontree. Hasilnya menunjukkan metode yang diusulkan dapat memisahkan teks dari dokumen citra lebih baik dari binarisasi global dengan tingkat pengenalan OCR hingga 99.4%.
WALL-FOLLOWING BEHAVIOR-BASED MOBILE ROBOT USING PARTICLE SWARM FUZZY CONTROLLER Andi Adriansyah; Shamsudin H. Mohd. Amin
Jurnal Ilmu Komputer dan Informasi Vol 9, No 1 (2016): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (854.753 KB) | DOI: 10.21609/jiki.v9i1.367

Abstract

Behavior-based control architecture has been broadly recognized due to their compentence in mobile robot development. Fuzzy logic system characteristics are appropriate to address the behavior design problems. Nevertheless, there are problems encountered when setting fuzzy variables manually. Consequently, most of the efforts in the field, produce certain works for the study of fuzzy systems with added learning abilities. This paper presents the improvement of fuzzy behavior-based control architecture using Particle Swarm Optimization (PSO). A wall-following behaviors used on Particle Swarm Fuzzy Controller (PSFC) are developed using the modified PSO with two stages of the PSFC process. Several simulations have been accomplished to analyze the algorithm. The promising performance have proved that the proposed control architecture for mobile robot has better capability to accomplish useful task in real office-like environment.
MULTI OBJECTIVES FUZZY ANT COLONY OPTIMIZATION DESIGN OF SUPPLY PATH SEARCHING Ditdit N Utama; Taufik Djatna; Erliza Hambali; Marimin .; Dadan Kusdiana
Jurnal Ilmu Komputer dan Informasi Vol 5, No 2 (2012): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1748.201 KB) | DOI: 10.21609/jiki.v5i2.194

Abstract

One of problem faced in supply chain management is path searching. The best path depend not only on distance, but also other variables, such as: the quality of involved companies, quality of delivered product, and other value resulted by quality measurement. Commonly, the ant colony optimization could search the best path that has only one objective path. But it would be difficult to be adopted, because in the real case, the supply path has multi path and objectives (especially in palm oil based bioenergy supply). The objective of this paper is to improve the ant colony optimization for solving multi objectives based supply path problem by using fuzzy ant colony optimization. The developed multi objectives fuzzy ant colony optimization design was explained here, that it was used to search the best supply path. Salah satu masalah yang dihadapi dalam Supply Chain Management adalah pencarian jalur. Jalur terbaik tidak hanya tergantung pada jarak, tetapi juga variabel lain, seperti: kualitas perusahaan yang terlibat, kualitas produk yang dikirimkan, dan nilai lain yang dipengaruhi oleh pengukuran kualitas. Umumnya, Ant Colony Optimization bisa mencari jalur terbaik yang hanya memiliki satu jalur objektif. Tapi akan sulit untuk diadopsi, karena dalam kasus nyata, jalur supply memiliki banyak jalur dan tujuan (khususnya pasokan minyak kelapa sawit berbasis bioenergi). Tujuan dari penelitian ini adalah untuk meningkatkan Ant Colony Optimization dalam menyelesaikan masalah jalur supply dengan menggunakan Fuzzy Ant Colony Optimization. Tujuan pengembangan Fuzzy Ant Colony Optimization dijelaskan disini, yaitu digunakan untuk mencari jalur supply terbaik.
DYNAMICS BASED CONTROL OF A SKID STEERING MOBILE ROBOT Osama Elshazly; Hossam Abbas; Zakarya Zyada
Jurnal Ilmu Komputer dan Informasi Vol 9, No 2 (2016): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information)
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (853.372 KB) | DOI: 10.21609/jiki.v9i2.381

Abstract

In this paper, development of a reduced order, augmented dynamics-drive model that combines both the dynamics and drive subsystems of the skid steering mobile robot (SSMR) is presented. A Linear Quadratic Regulator (LQR) control algorithm with feed-forward compensation of the disturbances part included in the reduced order augmented dynamics-drive model is designed. The proposed controller has many advantages such as its simplicity in terms of design and implementation in comparison with complex nonlinear control schemes that are usually designed for this system. Moreover, the good performance is also provided by the controller for the SSMR comparable with a nonlinear controller based on the inverse dynamics which depends on the availability of an accurate model describing the system. Simulation results illustrate the effectiveness and enhancement provided by the proposed controller.

Page 3 of 25 | Total Record : 247


Filter by Year

2009 2025


Filter By Issues
All Issue Vol. 18 No. 2 (2025): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Informatio Vol. 18 No. 1 (2025): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Informatio Vol. 17 No. 2 (2024): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Informatio Vol. 17 No. 1 (2024): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Informatio Vol. 16 No. 2 (2023): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Informatio Vol. 16 No. 1 (2023): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Informatio Vol. 15 No. 2 (2022): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Informatio Vol. 15 No. 1 (2022): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Informatio Vol 14, No 2 (2021): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 14, No 1 (2021): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 13, No 2 (2020): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 13, No 1 (2020): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 12, No 2 (2019): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 12, No 1 (2019): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 11, No 2 (2018): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 11, No 1 (2018): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 10, No 2 (2017): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 10, No 1 (2017): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information Vol 9, No 2 (2016): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 9, No 1 (2016): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 8, No 2 (2015): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 8, No 1 (2015): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 7, No 2 (2014): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 7, No 1 (2014): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 6, No 2 (2013): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 6, No 1 (2013): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 5, No 2 (2012): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 5, No 1 (2012): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 4, No 2 (2011): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 4, No 1 (2011): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 3, No 2 (2010): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 3, No 1 (2010): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 2, No 2 (2009): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) Vol 2, No 1 (2009): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information) More Issue