cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Bulletin of Electrical Engineering and Informatics
ISSN : -     EISSN : -     DOI : -
Bulletin of Electrical Engineering and Informatics ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication, computer engineering, computer science, information technology and informatics from the global world. The journal publishes original papers in the field of electrical (power), electronics, instrumentation & control, telecommunication and computer engineering; computer science; information technology and informatics. Authors must strictly follow the guide for authors. Please read these instructions carefully and follow them strictly. In this way you will help ensure that the review and publication of your paper is as efficient and quick as possible. The editors reserve the right to reject manuscripts that are not in accordance with these instructions.
Arjuna Subject : -
Articles 46 Documents
Search results for , issue "Vol 8, No 4: December 2019" : 46 Documents clear
A 30mV input battery-less power management system Jim Hui Yap; Yan Chiew Wong
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (890.672 KB) | DOI: 10.11591/eei.v8i4.1614

Abstract

This paper presents a fully-integrated on chip battery-less power management system through energy harvesting circuit developed in a 130nm CMOS process. A 30mV input voltage from a TEG is able to be boosted by the proposed Complementary Metal-Oxide-Semiconductor (CMOS) voltage booster and a dynamic closed loop power management to a regulated 1.2V. Waste body heat is harvested through Thermoelectric energy harvesting to power up low power devices such as Wireless Body Area Network. A significant finding where 1 Degree Celsius thermal difference produces a minimum 30mV is able to be boosted to 1.2V. Discontinuous Conduction Mode (DCM) digital control oscillator is the key component for the gate control of the proposed voltage booster. Radio Frequency (RF) rectifier is utilized to act as a start-up mechanism for voltage booster and power up the low voltage closed loop power management circuit. The digitally control oscillator and comparator are able to operate at low voltage 600mV which are powered up by a RF rectifier, and thus to kick-start the voltage booster.
Optimal distributed generation in green building assessment towards line loss reduction for Malaysian public hospital Mohd Effendi Amran; Mohd Nabil Muhtazaruddin; Nurul Aini Bani; Hazilah Mad Kaidi; Mohamad Zaki Hassan; Shamsul Sarip; Firdaus Muhammad-Sukki
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (932.755 KB) | DOI: 10.11591/eei.v8i4.1624

Abstract

This paper presents an optimization approach for criteria setting of Renewable Distributed Generation (DG) in the Green Building Rating System (GBRS). In this study, the total line loss reduction is analyzed and set as the main objective function in the optimization process which then a reassessment of existing criteria setting for renewable energy (RE) is proposed towards lower loss outcome. Solar photovoltaic (PV)-type DG unit (PV-DG) is identified as the type of DG used in this paper. The proposed PV-DG optimization will improve the sustainable energy performance of the green building by total line losses reduction within accepted lower losses region using Artificial bee colony (ABC) algorithm. The distribution network uses bus and line data setup from selected one of each three levels of Malaysian public hospital. MATLAB simulation result shows that the PV-DG expanding capacity towards optimal scale and location provides a better outcome in minimizing total line losses within an appropriate voltage profile as compared to the current setting of PV-DG imposed in selected GBRS. Thus, reassessment of RE parameter setting and the proposed five rankings with new PV-DG setting for public hospital provides technical justification and give the best option to the green building developer for more effective RE integration.
A novel optimum tip speed ratio control of low speed wind turbine generator based on type-2 fuzzy system Muldi Yuhendri; Mukhlidi Muskhir; Taali Taali
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (922.31 KB) | DOI: 10.11591/eei.v8i4.1450

Abstract

Variable speed control of wind turbine generator systems have been developed to get maximum output power at every wind speed variation, also called Maximum Power Points Tracking (MPPT). Generally, MPPT control system consists of MPPT algorithm to track the controller reference and generator speed controller. In this paper, MPPT control system is proposed for low speed wind turbine generator systems (WTGs) with MPPT algorithms based on optimum tip speed ratio (TSR) and generator speed controller based on field oriented control using type-2 fuzzy system (T2FS). The WTGs are designed using horizontal axis wind turbines to drive permanent magnet synchronous generators (PMSG). The simulation show that the MPPT system based optimum TSR has been able to control the generator output power around the maximum point at all wind speeds.
Solar PV parameter estimation using multi-objective optimisation Nikita Rawat; Padmanabh Thakur; Utkarsh Jadli
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (431.637 KB) | DOI: 10.11591/eei.v8i4.1312

Abstract

The estimation of the electrical model parameters of solar PV, such as light-induced current, diode dark saturation current, thermal voltage, series resistance, and shunt resistance, is indispensable to predict the actual electrical performance of solar photovoltaic (PV) under changing environmental conditions. Therefore, this paper first considers the various methods of parameter estimation of solar PV to highlight their shortfalls. Thereafter, a new parameter estimation method, based on multi-objective optimisation, namely, Non-dominated Sorting Genetic Algorithm-II (NSGA-II), is proposed. Furthermore, to check the effectiveness and accuracy of the proposed method, conventional methods, such as, ‘Newton-Raphson’, ‘Particle Swarm Optimisation, Search Algorithm, was tested on four solar PV modules of polycrystalline and monocrystalline materials. Finally, a solar PV module photowatt PWP201 has been considered and compared with six different state of art methods. The estimated performance indices such as current absolute error matrics, absolute relative power error, mean absolute error, and P-V characteristics curve were compared. The results depict the close proximity of the characteristic curve obtained with the proposed NSGA-II method to the curve obtained by the manufacturer’s datasheet.
Study and comparison results of the field oriented control for photovoltaic water pumping system applied on two cities in Morocco Mustapha Errouha; Aziz Derouich
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (617.447 KB) | DOI: 10.11591/eei.v8i4.1301

Abstract

In this papier, a low-cost solar photovoltaic water pumping system based on an induction motor without the use of chemical energy storage is presented. In literature, we can find several Maximum Power Point Tracking Algorithms, the choice of the algorithm is according to the nature of application. In this article, Variable Step Size Incremental Conductance MPPT method has been developed since it is fast and has less oscillations. The studied photovoltaic pumping system contains a centrifugal pump which is driven by a three-phase asynchronous motor. To control the water flow, the field-oriented control has been implemented. The control system is applied on two cities with different climatic conditions to evaluate their performance. The photovoltaic pumping system is developed using the MATLAB/Simulink software to discuss the results obtained. Consequently, the proposed MPPT based on the incremental conductance variable step shows good performances in terms of efficiency and tracking speed.
Design consideration in low dropout voltage regulator for batteryless power management unit Mohamad Khairul bin Mohd Kamel; Yan Chiew Wong
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1633.739 KB) | DOI: 10.11591/eei.v8i4.1607

Abstract

Harvesting energy from ambient Radio Frequency (RF) source is a great deal toward batteryless Internet of Thing (IoT) System on Chip (SoC) application as green technology has become a future interest. However, the harvested energy is unregulated thus it is highly susceptible to noise and cannot be used efficiently. Therefore, a dedicated low noise and high Power Supply Ripple Rejection (PSRR) of Low Dropout (LDO) voltage regulator are needed in the later stages of system development to supply the desired load voltage. Detailed analysis of the noise and PSRR of an LDO is not sufficient. This work presents a design of LDO to generate a regulated output voltage of 1.8V from 3.3V input supply targeted for 120mA load application. The performance of LDO is evaluated and analyzed. The PSRR and noise in LDO have been investigated by applying a low-pass filter. The proposed design achieves the design specification through the simulation results by obtaining 90.85dB of open-loop gain, 76.39º of phase margin and 63.46dB of PSRR respectively. The post-layout simulation shows degradation of gain and maximum load current due to parasitic issue. The measurement of maximum load regulation is dropped to 96mA compared 140mA from post-layout. The proposed LDO is designed using 180nm Silterra CMOS process technology.
Development of a quadruped mobile robot and its movement system using geometric-based inverse kinematics Muhammad Aziz Muslim; Mochammad Rusli; Achnafian Rafif Zufaryansyah; B. S. K. K. Ibrahim
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (795.252 KB) | DOI: 10.11591/eei.v8i4.1623

Abstract

As the main testbed platform of Artificial Intelligence, the robot plays an essential role in creating an environment for industrial revolution 4.0. According to their bases, the robot can be categorized into a fixed based robot and a mobile robot. Current robotics research direction is interesting since people strive to create a mobile robot able to move in the land, water, and air. This paper presents development of a quadruped mobile robot and its movement system using geometric-based inverse kinematics. The study is related to the movement of a four-legged (quadruped) mobile robot with three Degrees of Freedom (3 DOF) for each leg. Because it has four legs, the movement of the robot can only be done through coordinating the movements of each leg. In this study, the trot gait pattern method is proposed to coordinate the movement of the robot's legs. The end-effector position of each leg is generated by a simple trajectory generator with half rectified sine wave pattern. Furthermore, to move each robot's leg, it is proposed to use geometric-based inverse kinematic. The experimental results showed that the proposed method succeeded in moving the mobile robot with precision. Movement errors in the translation direction are 1.83% with the average pose error of 1.33 degrees, means the mobile robot has good walking stability.
An improvised similarity measure for generalized fuzzy numbers Daud Mohamad; Noorlisa Sara Adlene Ramlan; Sharifah Aniza Sayed Ahmad
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (654.038 KB) | DOI: 10.11591/eei.v8i4.1629

Abstract

Similarity measure between two fuzzy sets is an important tool for comparing various characteristics of the fuzzy sets. It is a preferred approach as compared to distance methods as the defuzzification process in obtaining the distance between fuzzy sets will incur loss of information. Many similarity measures have been introduced but most of them are not capable to discriminate certain type of fuzzy numbers. In this paper, an improvised similarity measure for generalized fuzzy numbers that incorporate several essential features is proposed. The features under consideration are geometric mean averaging, Hausdorff distance, distance between elements, distance between center of gravity and the Jaccard index. The new similarity measure is validated using some benchmark sample sets. The proposed similarity measure is found to be consistent with other existing methods with an advantage of able to solve some discriminant problems that other methods cannot. Analysis of the advantages of the improvised similarity measure is presented and discussed. The proposed similarity measure can be incorporated in decision making procedure with fuzzy environment for ranking purposes.
Comparative performance evaluation of routing algorithm and topology size for wireless network-on-chip Asrani Lit; M. S. Rusli; M. N. Marsono
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1175.122 KB) | DOI: 10.11591/eei.v8i4.1588

Abstract

Wireless Network-on-Chip or WiNoC is an alternative to traditional planar on-chip networks. On-chip wireless links are utilized to reduce latency between distant nodes due to its capability to communicate with far-away node within a single hop. This paper analyzes the impact of various routing schemes and the effect of WiNoC sizes on network traffic distributions compared to conventional mesh NoC. Radio hubs (4×4) are evenly placed on WiNoC to analyze global average delay, throughput, energy consumption and wireless utilization. For validation, three various network sizes (8×8,   16×16 and 32×32) of mesh NoC and WiNoC architectures are simulated on cycle-accurate Noxim simulator under numerous traffic load distributions. Simulation results show that WiNoC architecture with the 16×16 network size has better average speedup (∼1.2×) and improved network throughputs by 6.36% in non-uniform transpose traffic distribution. As the trade-off, WiNoC requires 63% higher energy consumption compared to the classical wired NoC mesh.
Device simulation of perovskite solar cells with molybdenum disulfide as active buffer layer Ainon Shakila Shamsuddin; Puteri Nor Aznie Fahsyar; Norashikin Ahmad Ludin; Ibrahim Burhan; Salina Mohamad
Bulletin of Electrical Engineering and Informatics Vol 8, No 4: December 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (807.745 KB) | DOI: 10.11591/eei.v8i4.1596

Abstract

Organo-halide Perovskite Solar Cells (PSC) have been reported to achieve remarkably high power conversion efficiency (PCE). A thorough understanding of the role of each component in solar cells and their effect as a whole is still required for further improvement in PCE. In this paper, the effect of Molybdenum Disulfide (MoS2) in PSC with mesoporous structure configuration was analyzed using Solar Cell Capacitance Simulator (SCAPS). With the MoS2 layer which having two-fold function, acting as a protective layer, by preventing the formation of shunt contacts between perovskite and Au electrode, and as a hole transport material (HTM) from the perovskite to the Spiro-OMETAD. As simulated, PSC demonstrates a PCE, ŋ of 13.1%, along with stability compared to typical structure of PSC without MoS2 (Δ ŋ/ŋ=-9% vs. Δ ŋ/ŋ=-6%). The results pave the way towards the implementation of MoS2 as a material able to boost shelf life which very useful for new material choice and optimization of HTMs.