cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota denpasar,
Bali
INDONESIA
Jurnal Energi Dan Manufaktur
Published by Universitas Udayana
ISSN : 23025255     EISSN : 25415328     DOI : -
"Jurnal Energi dan Manufaktur" is a journal published by Department of Mechanical Engineering, University of Udayana, Bali since 2006. During 2006-2011 the journal's name was "Jurnal Ilmiah Teknik Mesin CAKRAM" (Scientific journal in mechanical engineering, CAKRAM). "Jurnal Energi dan Manufaktur" is released biannually on April and October, respectively. We invite authors to submit papers from experimental research, review work, analytical-theoretical study, applied study, and simulation, in related to mechanical engineering (energy, material, manufacturing, design) to be published through "Jurnal Energi dan Manufaktur".
Arjuna Subject : -
Articles 387 Documents
Pemanfaatan Potensi Limbah Tongkol Jagung Sebagai Syngas Melalui Proses Gasifikasi di Wilayah Provinsi Gorontalo Siradjuddin Haluti
Jurnal Energi Dan Manufaktur Vol 8 No 2 (2015): Oktober 2015
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (143.83 KB)

Abstract

Abstrak:Jagung merupakan komoditi unggulan Propinsi Gorontal. Walaupun mengalami fluktuasi produksi jagung ditiap tahun tidak mempengaruhi produksi jagung di Provinsi Gorontalo. Dalam beberapa tahun terakhir kebutuhan jagung makin meningkat, dengan meningkatnya kebutuhan jagung berdampak pada tingginya produksi limbah tongkol jagung yang dihasilkan provinsi Gorontalo, tentunya ini akan menimbulkan masalah bagi lingkungan. Limbah tongkol jagung merupakan salah satu sektor yang belum dimanfaatkan di provinsi Gorontalo secara maksimal dalam meningkatkan nilai ekonomis, lebih efisien dan efektif penggunaannya. Diantaranya pemanfaatan biomassa tongkol jagung sebagai energi bahan bakar alternatif. Tujuan yang diangkat dalam peneliitian ini adalah (1) Mengetahui potensi produksi limbah tongkol jagung di wilayah Provinsi Gorontalo sebagai energi alternatif. (2)Mengetahui potensi energi alternatif melalui proses gasifikasi sebagai pemanfaatan dari bahan baku limbah tongkol jagung untuk jadi Gas Syntesis (Syngas). Metode pengumpulan data, pengolahan data dan analisis data. Hasil potensi bahan bakar yang dapat dihasilkan dari pemanfaatan limbah tongkol jagung untuk wilayah Provinsi Gorontalo dapat mencapai total rata-rata sebesar 72.931 ton limbah tongkol jagung. Untuk pemanfaatan limbah tongkol jagung sebagai bahan bakar alternatif melalui proses gasifikasi menghasilkan syngas sebesar 92.852 ton. Kata kunci: Potensi, Limbah, Tongkol Jagung, Gasifikasi, Energi.Abstract:Corn is a commodity Gorontal province. Despite the fluctuations in maize production in each year does not affect maize production in Gorontalo Province. In recent years, corn demand is increasing, with the increasing demand of corn contributes to the high production of waste generated corncob Gorontalo province, this course will cause problems for the environment. Corncob waste is one sector that is untapped in the province of Gorontalo to the maximum in improving economic value, more efficient and effective use. Among the corn cob biomass utilization as an energy alternative fuels. Interest raised in research are (1) Determine the potential corncob waste production in the province of Gorontalo as an alternative energy. (2) Determine the potential of alternative energy through a gasification process as the utilization of waste materials for the corn cobs so synthesis Gas (Syngas). Methods of data collection, data processing and data analysis. The results of potential fuel that can be produced from corn cobs waste utilization for the province of Gorontalo can reach a total average of 72 931 tonnes of waste corncobs. To use corncob waste as an alternative fuel through a gasification process to produce syngas amounted to 92 852 tones. . Keywords: Potential, Waste, Corn Cob, Gasification, Energy.
Pemanfaatan serat silicon carbon dan partikel alumina pada matrik aluminium untuk meningkatkan sifat mekanis material komposit Ketut Suarsana
Jurnal Energi Dan Manufaktur Vol 9 No 2 (2016): Oktober 2016
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (349.74 KB)

Abstract

Abstrak:Pemanfaatan penguat material komposit berbasis serat dan juga partikel pada pembuatan bahan komposit sekarang ini sangatpotensial untuk dikembangkan dan diteliti. Beragam sumber serat dan juga penguat dalam bentuk partikel bisa didapat dari seratalami dari tumbuh-tubuhan dan juga serat yang sudah dikenakan perlakuan sebelumnya. Indonesia memiliki potensi sumberalam yang sangat potensial terutama sebgai sumber serat dari tumbuhan juga berupa logam aluminium (bauxite) dari fosil.Bahan ini dapat dimanfaatkan untuk kebutuhan masyarakat industri sebagai bahan dasar pembuatan komposit bermatrikAluminium dan sebagai penguat berupa serat maupun partikel alumina. Metode pembuatan Aluminum Matrix Composite (AMC)dengan proses metalurgi serbuk pada gaya tekan/kompaksi 2,5 ton mengunakan alat press hydrolik, waktu penahanan 15menit, serta proses perlakuan pada variasi komposisi berat (%wt). Variasi komposisi penguat serat Silicon Carbon (SiC) danAl2O3 (alumina) pada matrik Aluminium adalah : 30% SiC + 0% Al203, 27% SiC + 3% Al203, 24% SiC + 6% Al203 dan 21% SiC+ 9% Al203 dengan matrik 70% Al, pada kondisi tempertaur 500oC, 550oC dan 600oC. Setelah material komposit terbentuk, diujiuntuk mengetahui sifat mekanik akibat pengaruh variasi komposisi antara matrik dan penguatan pada komposit. Uji karakteristikdilakukan di laboratorium untuk menggetahui sifat kekuatan dan kekerasan material komposit. Selanjutnya dicari hubunganantara sifat masing-masing komposisi penguat serat SiC dan Al2O3 pembentuk komposit yang dibuat untuk mengetahui manfaatdari penguat serat dan partikel alumina.Kata Kunci: Sifat kekuatan, kekerasan, serat SiC dan Al2O3Abstract:Utilization reinforcement fiber-based composite material and particles in the manufacture of composite materials now havepotential to be developed and researched. Various sources of fiber and reinforcement in particle form can be obtained fromnatural fibers from plants and fiber that has been subjected to a previous treatment. Indonesia has the potential of naturalresources potential, especially as fiber from plant sources also include metals aluminum (bauxite) from fossils. This material canbe used for the needs of the industry as the manufacture of composite base Aluminium and as a reinforcement in the form offibers or particles of alumina. The method of making Aluminum Matrix Composites (AMC) with a powder metallurgy process atthe compression force / compaction 2.5 tons using a hydraulic press equipment, holding time 15 minutes, and the treatmentprocess in the variation of the composition by weight (%wt). Variations in the composition of the fiber reinforcement SiliconCarbon (SiC) and Al2O3 (alumina) on a matrix Aluminium is: 30% SiC + 0% Al203, 27% SiC + 3% Al203, 24% SiC + 6% Al203 and21% SiC + 9% Al203 with a matrix of 70% Al, on condition tempertaur 500oC, 550oC and 600oC. After the composite material isformed, tested for mechanical properties due to the influence of variations in composition between matrix and reinforcement incomposites. Characteristics test performed in the laboratory to knowing strength and hardness properties of composite materials.Furthermore sought the relationship between the nature of each composition fiber reinforcement and an Al2O3 forming SiCcomposites made to know the benefits of reinforcing fibers and particles of alumina.Keywords: Strength, hardness, SiC fibers and Al2O3
Analisa Bentuk Profil dan Dimensi Supporting Profile terhadap Defleksi dan Tegangan pada Base Kondensor Unit Purna Anugraha Suarsana; Ahmad Hanif Firdaus; Ismi Choirotin; Moch. Agus Choiron
Jurnal Energi Dan Manufaktur Vol 6 No 2 (2013): Oktober 2013
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (494.236 KB)

Abstract

AbstrakKondensor merupakan komponen dari sistem refrigrasi yang berfungsi untuk membuang kaloryang berasal dari dalam ruangan ke lingkungan sekitar. Salah satu elemen pada kondensoryang menerima pembebanan terbesar adalah Supporting Profile.Penelitian ini bertujuan untukmenganalisa bentuk profil dan dimensi Supporting Profile terhadap defleksi dan tegangan padabase kondensor unit, sehingga dapat diprediksi desain Supporting Profile dengan tegangandan defleksi minimal. Penelitian ini menggunakan metode Elemen Hingga denganmemanfaatkan SoftwareAnsys 14.5. Material Supporting Profile yang digunakan adalah RSt37-2 (S235JRG2) yang diasumsikan memakai model material linear isotropic hardening. Tipeelemen yang digunakan dalam pemodelan ini adalah beam, 3D node 189. Pembebanan padaSupporting Profile berupa berat total dari unit kondensor, dimana berat total merupakanpenjumlahan dari berat kering kondensor dengan berat refrigrant yang terdapat didalamkondensor. Variasi bentuk profil pada penelitian ini adalah; C-Profile, I-Profile dan Box-Profile.Variasi dimensi Supporting Profile yang digunakan meliputi tinggi, lebar dan tebal masingmasingadalah 60 x 40 x 3mm, 80 x 50 x 5mm,100 x 50 x 3, 100 x 50 x 5mm dan 120 x 60 x6mm. Hasil dari pemodelan dibandingkan dengan hasil analitis untuk memverifikasipemodelan. Dari hasil penelitian ini diperoleh bahwa tegangan dan defleksi terkecil terjadi padaSupporting Profile dengan bentuk Box-Profile dan dimensi profil 120 x 60 x 6mm.Kata Kunci: Supporting profile, defleksi, tegangan, bentuk profil, dimensiAbstractThe condenser is a component of a refrigeration system that serves to throw heat from indoorsto the surrounding environment. One element of the condenser which receives the largest loadis Supporting Profile. This research aims to analyze the profile’s shape and supporting profile’sdimensions to deflection and stress at base of condenser unit, so it can be predicted supportingprofile’s design with minimum stress and deflection. This study uses Finite Element method byutilizing Ansys 14.5 software. The material of supporting profile was RSt37 - 2 ( S235JRG2 )which assumed as linear isotropic hardening material. The type of elements used in thismodeling is beam , 3D node 189. The load of supporting profile is the total weight of thecondenser unit , which is the sum of the total dry weight of the the condenser and the weight ofrefrigerant contained in the condenser. Profile variations in this study are: C -Profile , I-Profileand Box -Profile . Variation ofSupporting profile’s dimensions are height, width and thicknesswhich respectively 60 x 40 x 3mm , 80 x 50 x 5mm , 100 x 50 x 3 , 100 x 50 x 5 mm and 120 x60 x 6mm. The results of modeling compared with analytic results to verify the modeling . Theresults of this study shown that the smallest stress and deflection occurs in a SupportingProfilewith Box – Profile’s shape and dimensionof profile 120 x 60 x 6mm.Keywords: Supporting profile, deflection, stress, profile’s shape, dimension
Kata Pengantar dan Daftar isi : Volume 10, Nomor 2, Oktober 2017 Ainul Ghurri
Jurnal Energi Dan Manufaktur Vol 10 No 2 (2017): Oktober 2017
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (719.986 KB)

Abstract

Penanggung Jawab Ketua Jurusan Teknik Mesin UNUD Ketua Penyunting Ainul Ghurri, S.T., M.T., Ph.D. Mitra Bestari Prof. Dr. Ir. I Wayan Surata, M.Erg. (UNUD) Prof. Ir. Ngakan Putu Gede Suardana, MT.,Ph.D. (UNUD) Prof. Dr. Ir. I Nyoman Gde Antara, M.Eng. (UNUD) Prof. IN Suprapta Winaya, ST, MASc., Ph.D. (UNUD) Prof. Dr. Ir. I GB Wijaya Kusuma (UNUD) Prof. Dr. Tjokorda Gde Tirta Nindhia, ST, MT. (UNUD) Prof. Dr. Ing. Ir. I Made Londen Batan, MEng. (ITS) Prof. Ir. IN Sutantra, MSc., PhD. (ITS) Prof. Dr. Ir. I NG Wardana, MEng. (UB) Dr. Ir. Suhanan, DEA. (UGM) Dr. Ir. Yanuar, MEng, MSc. (UI) Prof. Dr. Ir. Johny Wahyudi S, DEA. (UI) Ir. I GN Wiratmaja Puja, MSME, PhD. (ITB) Dr. Ir. Dipl.Ing. Berkah Fajar TK. (UNDIP) Prof. Dr. Ing. Ir. Harwin Saptoadi, MSE. (UGM) Penyunting Pelaksana I Ketut Adi Atmika, S.T., M.T. Dewa Ngakan Ketut Negara Putra Negara, ST., MSc. I Made Widiyarta, ST., MSc., Ph.D. I Gusti Ketut Sukadana, ST., MT. Ketut Astawa, S.T., M.T. I Made Astika, ST., MErg., MT, Dr. Wayan Nata Septiadi, S.T., M.T.
Influence of Blocker Distance Variations in form of Triangle in Front of Cylinder toward Drag Coefficien Si Putu Gede Gunawan Tista
Jurnal Energi Dan Manufaktur Vol 3, No.1 April 2009
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (506.459 KB)

Abstract

One of the ways to reduce energy consumption on the air plane and the other bluff bodies are by decreasing the drag. Drag isclosely related to the flow separation. The earlier separation, then the drag will increase more. Based of the fact the effort todecrease drag is conducted by manipulating the field of fluid flow. Stream manipulation was be done by installing Triangleobstacle in front of cylinder. The purpose of this research is to analyze the effect of various distance triangle obstacle in front ofcylinder on drag. The present experiment was done by placing triangle rod in front of the cylinder. In the present research, theexperiment was conducted in the wind tunnel, which consisted of blower, pitot pipe, manometer, cylinder pipe, and triangle rod.The triangle was positioned at L/D = 1.19, L/D = 1.43, L/D = 1.67, L/D = 1.9, L/D = 2.14, L/D = 2.38, L/D = 2.62, and L/D =2.86 by upstream from the cylinder. The triangle was 8 mm uniform side. The Reynolds number based on the cylinder diameter (D= 42 mm) was Re = 1.81 x 104. The research results showed that the triangle rod could decrease the drag of cylinder. Coefficientdrag for cylinder without triangle rod was 0.1276 while the biggest decrease of coefficient of drag with triangle rod washappened at L/D = 1.43 which was 0.0188. It means that the drag of cylinder with triangle rod was 85.25% lower than thecylinder alone.
Pack Carburizing Baja Karbon Rendah Dewa Ngakan Ketut Putra Negara; I Dewa Made Kirshna Muku
Jurnal Energi Dan Manufaktur Vol 8 No 2 (2015): Oktober 2015
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (266.269 KB)

Abstract

Abstrak:Penelitian ini bertujuan untuk mengetahui sifat mekanis khususnya kekerasan dan kekuatan tarik baja karbon rendah setelah dikarburasi menggunakan media karburasi (carburizer) campuran 80% arang bambu dan 20% BaCO3 sebagai energizer. Penelitian dilakukan dengan memasukkan specimen uji ke dalam kotak pack carburizing yang telah berisi media karburasi, kemudian kotak pack carburizing dimasukkan ke dalam dapur pemanas dan dipanaskan sampai suhu 9500C. Pada suhu tersebut specimen ditahan selama 4 jam kemudian kotak baja dikeluarkan dari dapur pemanas. Specimen dikeluarkan dari kotak baja dan didinginkan di udara. Selanjutnya dilakukan pengujian kekerasan menggunakan Vikers Testing Machine. Sedangkan uji tarik dilakukan dengan menggunakan Universal Testing Machine. Hasil penelitian menunjukkan bahwa setelah dikarburizing baja karbon rendah mengalami perubahan sifat mekanis. Kekerasan raw material sebesar 183,60 HV1 meningkat 100,68 % menjadi 368,46 HV1 setelah dikarburizing. Demikian juga kekuatan luluh dan kekuatan tarik yang semula 31,99 kg/mm2 dan 42,08 HV1 kg/mm2 meningkat secara berturut turut menjadi 48,94 kg/mm2 dan 55,05 kg/mm2. Namun di sisi lain, terjadi penurunan elongasi yang semula 30,07 % menurun menjadi 7,6%. Kata kunci: Pack carburizing, kekerasan, kekuatan tarik, media karburasiAbstract:This research is focused on the mechanical properties, especially on the hardness and tensile strength of low carbon steel after pack carburizing process by use of carburizer consisting of 80% bamboo coal and 20% BaCO3 as energizer. The research was carried out by packing of low carbon steel specimens in a steel box filled of carburizer. The steel box was then loaded into electric furnace, heated up to 9500C, and socked at the temperature during 4 hours. After that socking time, the steel box was drooped out from electric furnace and specimens were taken from steel box and colded in the air. Furthermore, it was undertaken hardness and tensile test by use of Vickers Hardness Tester and Universal Testing machine respectively. The result of research showed that there were mechanical properties changes of low carbon steel after carburizing process. Hardness of raw material (183.60 HV1) increased about 100.68% to 368.46 HV1 after carburizing. Furthermore, yield strength of 31.99 kg/mm2 and tensile strength of 42.08 kg/mm2 also increased to 48.94 kg/mm2 and 55.05 kg/mm2 respectively. However, there was a decrease in elongation from 30.07% to 7.6%. Keywords: Pack carburizing, hardness, tensile strength, carburizer
Studi sifat mekanis komposit epoxy berpenguat serat sisal orientasi acak yang dicetak dengan teknik hand-lay up I Wayan Surata; I Putu Lokantara; Ade Putra Arimbawa
Jurnal Energi Dan Manufaktur Vol 9 No 2 (2016): Oktober 2016
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (170.683 KB)

Abstract

Abstrak:Tanaman sisal tumbuh liar di daerah kering berbatuan seperti di pulau Nusa Penida kabupaten Klungkung, yang oleh penduduklokal disebut tanaman bagu. Serat sisal sangat kuat oleh karena itu dahulu banyak digunakan sebagai tali-temali penambatjukung atau perahu, sebelum dikenalnya tali nilon seperti saat ini. Belakangan ini serat alam termasuk sisal banyakdikembangkan sebagai penyusun komposit. Komposit serat sisal dapat dibudidayakan dengan mudah dan murah sehinggaketersediaannya bisa berkelanjutan, serta ramah terhadap lingkungan. Kekuatan mekanis komposit yang diperkuat denganserat alam dapat ditingkatkan dengan mengatur perbandingan fraksi volume serat di dalam komposit tersebut. Tujuanpenelitian ini adalah menyelidiki pengaruh fraksi volume serat terhadap sifat tarik dan lentur komposit berpenguat serat sisaldengan matriks epoxy. Serat sisal diperoleh dengan cara ekstraksi yaitu perendaman dan penyisiran, kemudian dipotongdengan ukuran panjang 3 cm. Serat sisal mengalami perlakuan dalam larutan alkali 5% NaOH selama 2 jam. Matriks yangdigunakan adalah epoxy resin, dengan hardener versamid. Komposit dibuat dengan teknik press hand lay-up, dengan variasifraksi volume serat sisal 15%, 20%, dan 25% yang disusun secara acak. Komposit hasil cetakan mengalami post curing padasuhu 65 oC selama 2 jam. Spesimen uji tarik dibuat berdasarkan standar ASTM D3039, dan uji lentur mengacu pada standarASTM D790M. Pengujian tarik dilakukan dengan mesin uji tarik universal, dan pengujian lentur dengan metode tiga titikpembebanan. Hasil penelitian menunjukkan bahwa kekuatan tarik dan modulus elastisitas tarik komposit meningkat seiringdengan meningkatnya fraksi volume serat, dan nilai optimum terjadi pada fraksi volume serat 25%, yaitu 19,77 MPa untukkekuatan tarik, dan 2,83 GPa untuk modulus elastisitas, sementara regangan tarik optimum terjadi pada fraksi volume serat15%, yaitu sebesar 1,01%. Kekuatan lentur dan modulus lentur serta regangan lentur juga meningkat seiring denganmeningkatnya fraksi volume serat, dan nilai optimum dicapai pada komposit dengan fraksi volume serat 25%, yaitu 88,48 MPa,untuk kekuatan lentur, dan 0,259 GPa untuk modulus elastisitas lentur, serta regangan lentur sebesar 7,55%.Kata kunci: Serat sisal, komposit epoxy, fraksi volume, kekuatan tarik, kekuatan lenturAbstract:The sisal plant (Agave sisalana) grows wild in arid areas such as the rocky island of Nusa Penida in Klungkung regency, andlocal people call bagu plants. Sisal fiber is very strong that is why it widely used as rigging on boats or ships, before they knownylon rope. Currently, natural fibers including sisal has been developed as elements to produce composites. Sisal fibers can becultivated easily and inexpensively so that availability will be sustainable and environmentally friendly. Mechanical strength ofcomposites that reinforced with natural fibers can be improved by setting the ratio of fibers volume fraction in the composite.The aim of this study was to investigate the effect of fiber volume fraction on tensile and flexural properties of composite withsisal fiber and epoxy matrix. Sisal fibers obtained with extraction process by soaking and combing, then cut to a length of 3 cm.Sisal fibers undergo treatment in an alkaline solution of 5% NaOH for 2 hours. The matrix used is epoxy resin, with a hardenerversamid. Composites was made by hand lay-up technique, with a variation of fibers volume fraction of 15%, 20%, and 25%which were arranged randomly. Composite underwent post curing at a temperature of 65 ° C for 2 hours. Tensile testspecimens were made based on the standard ASTM D3039, and the flexural test based on ASTM standards D790M. Tensiletest was conducted by using universal tensile testing machine, and flexural test with a three-point loading method. The resultsshowed that the tensile strength and tensile modulus of elasticity of the composite increases with increasing fibers volumefraction, and the optimum value occured in the fibers volume fraction of 25%, the highest value of 19.77 MPa for tensilestrength, and 2.83 GPa for the modulus of elasticity, while the strain optimum occured on the fibers volume fraction of 15%, withvalue 1.01%. Flexural strength, flexural modulus and flexural strain also increases with increasing fiber volume fraction, and theoptimum value was achieved in the composite with a fiber volume fraction of 25%, with value of 88.48 MPa for flexural strength,flexural modulus of 0.259 GPa and flexural strain of 7.55%.Keywords: Sisal fiber, epoxy composites, volume fraction, tensile strength, flexural strength
Analisa Pengaruh Parameter Tekanan dan Waktu Penekanan Terhadap Sifat Mekanik dan Cacat Penyusutan dari Produk Injection Molding Berbahan Polyethylene (PE) Erwin Erwin
Jurnal Energi Dan Manufaktur Vol 6 No 1 (2013): April 2013
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (345.89 KB)

Abstract

Injection molding adalah salah satu operasi yang paling umum dan serba guna untuk produksi massalpada komponen plastik yang komplek dengan toleransi dimensional yang sempurna. Pada prosesinjection molding, parameter waktu dan penekanan merupakan salah satu parameter penting yangharus diperhatikan untuk keberhasilan proses produksi melalui injection molding. Metode yangdigunakan adalam menggunakan response surface methodology . metode ini merupakan suatu prosesperencanaan percobaan untuk memperoleh data yang tepat sehingga dapat dianalisa dengan metodestatistik serta kesimpulan yang diperoleh dapat bersifat objektif dan valid. Dari hasil penelitian didapatkesimpulan bahwa Parameter tekanan dan waktu penekanan hanya memberi pengaruh terhadap sifatmekanik flexural strength dan flexural modulus spesimen. Dari segi nilai properties yang dihasilkanspesimen no.4 yang memiliki nilai properties terbaik. Dan dari data output analisis shrinkage denganmenggunakan RSM didapat kesimpulan bahwa bahwa kedua parameter proses tersebut mempunyaipengaruh yang signifikan terhadap terjadinya shrinkage. Dari hasil optimasi menggunakan fiturresponse surface optimizer didapat hasil setting parameter optimal adalah waktu penekanan: 1,6898 (s),tekanan: 78,2290 (bar).
ANALISIS ARAH DAN PERLAKUAN SERAT TAPIS SERTA RASIO EPOXY HARDENER TERHADAP SIFAT FISIS DAN MEKANIS KOMPOSIT TAPIS/EPOXY Putu Lokantara; Ngakan Putu Gede Suardana
Jurnal Energi Dan Manufaktur Vol 2, No.2 Desember 2007
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (203.669 KB)

Abstract

Tapis kelapa (Coconut filter) as natural fiber, in this time its resources very copius but no longer be exploited and thrown off hand as waste though in fact its used for other material dissimilar inovatif and high economic valuable that is as one of natural fiber alternative to be composite. The objective of this research is to investigate the behavior changing of physical and mechanical properties of composite tapis kelapa as reinforcement and epoxy 7120 with hardener Versamid 140 as matrix. The fiber is treated with the chemical NaOH and KMnO4 with percentage 0.5%, 1%, and 2% in weight, respectively. The ratio of epoxy and hardener is 7:3 and 6:4, and fiber orientation 0o, 45o, dan 90o. For testing of the speciment in tensile test with ASTM standard D3039 and three point bending test with ASTM standard D790. The result of this research obtained that fiber treatment with KMnO4 give the better effect to machine properties compared to NaOH. Variation of percentage 0.5%, 1%, and 2% NaOH and KMnO4 give the effect in fiber surface which higher percentage make the cleaner of surface, decrease of wax contain, and roughness of fiber surface so that stronger of linkage of fiber and matrix and increase of tensile strength, bending strength, and bending modulus of the composite. The highest tensile strength, modulus of elasticity and bending strength are 70.23 MPa, 446.24 GPa and 97.81 MPa respectively reached at composite with ratio epoxy/hardener 7:3; by 2% KMnO4 and fiber orientation 45o. While the highest modulus of elasticity is 385.48 GPa reached at composite with the ratio epoxy/hardener 6:4; 2% KMnO4 and fiber orientation 90o. Keywords: Tensile Strength, bending strength, ratio of epoxy/hardener, NaOH, KMnO4
Auto Tuning PID Controller Untuk Mengendalikan Kecepatan DC Servomotor Robot Gripper 5 Jari I Wayan Widhiada; Wayan Reza Yuda Ade Putra; Cok. G Indra Partha
Jurnal Energi Dan Manufaktur Vol 7 No 2 (2014): Oktober 2014
Publisher : Department of Mechanical Engineering, University of Udayana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (177.77 KB)

Abstract

Peneliti membahas pemodelan kecepatan DC servomotor pada gripper lima jari yangdikontrol dengan auto tuning PID controller. Methode auto turning digunakan untukmendapatkan nilai response control yang optimal. Pemodelan DC servomotor dilakukandengan menggunakan metode Fungsi Alih dimana fungsi ini merupakan perbandingantransformasi output laplace dengan input aplace dari system motor DC. Pemodelan inidisimulasikan dengan menggunakan blok diagram dalam Simulink/MATLAB dan juga dapatmenggunakan toolbox simelectronics/Simulink. Dari hasil simulasi didapat bahwa DCservomotor telah mencapai kecepatan yang stabil pada waktu yang relative singkat dengansinyal kesalahan penggerak yang sangat kecil pula.Kata kunci: DC servomotor, PID controller, auto tuningThe authors present the modeling of DC servomotor speed into five fingers gripper whichcontrolled by auto tuning of PID controller. Auto tuning method is used to obtained theoptimum of response value control. The modeling of DC servomotor is obtained to use thetransfer function method which this function is a comparison between output Laplacetransform and input Laplace transform from DC servomotor system. This model can besimulated to use the diagram block in Simulink/MATLAB and also can be used thesimelectronics/simulink toolbox. From simulation result, it is obtained that DC servomotorhas achieved the steady speed response at short time with the smallest error signal too..Keywords: DC servomotor, PID controller, auto tuning

Page 9 of 39 | Total Record : 387