Claim Missing Document
Check
Articles

Found 16 Documents
Search

Rancang Bangun Website Lembaga Pendidikan, Sosial dan Keagamaan Madams Dara Babel Aini, Farida Nur; Sahal, Ahmad; Rahmat, Beni; nur aini, farida
Jurnal Informatika Komputer, Bisnis dan Manajemen Vol 22 No 1 (2024): Januari 2024
Publisher : LPPM STMIK El Rahma Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61805/fahma.v22i1.111

Abstract

Rancangan sistem informasi ini difokuskan pada pengembangan aplikasi berbasis web untuk "MADAM’S DARA FOUNDATION (MDF)" menggunakan framework CodeIgniter. Pendekatan ini menitikberatkan pada penggunaan basis data awan untuk pencatatan dan penyimpanan gambar atau data dalam format PDF. Permasalahan utama terletak pada pembangunan situs web yang mudah digunakan dan komunikatif, mengintegrasikan bagian depan (front-end) dan belakang (back-end) untuk memudahkan manajemen yayasan dalam memantau situs.Penelitian ini bertujuan untuk mengembangkan aplikasi situs web "MADAM’S DARA FOUNDATION (MDF)" dengan menerapkan metodologi Extreme Programming (XP) untuk meningkatkan semangat pelayanan bagi pengguna. Hasilnya dipublikasikan dalam Jurnal Nasional dengan fokus kontribusi pada perancangan aplikasi daring dan aplikasi yang dapat digunakan di MDF. Penelitian lebih menitikberatkan pada aspek pemrograman web menggunakan framework CodeIgniter daripada pembuatan konten.Meskipun penelitian ini berhasil membentuk dasar struktural aplikasi, penelitian lanjutan diperlukan untuk menentukan konten yang menarik bagi pengguna sebagai pengembangan masa depan. Metodologi penelitian berpusat pada peningkatan aplikasi web "MADAM’S DARA FOUNDATION (MDF)" dengan menggunakan metodologi CodeIgniter dan XP, dengan tujuan utama mengembangkan situs web yang ramah pengguna dan mudah dikelola secara teknis. Penelitian mendatang akan menjelajahi konten yang menarik untuk meningkatkan daya tarik dan interaksi pengguna di platform ini, membuka peluang untuk penelitian dan pengembangan lebih lanjut.
INOVASI ADJUSTABLE FRUIT SLICER UNTUK MENUNJANG EFISIENSI DAN EFEKTIVITAS PROSES PRODUKSI DI UMKM NICE DRY Larasati, Aisyah; Afridasari, Mayang Fikri; Santoso, Gilang Aditya; Moekti, M. Rhessal Chandra; Putro, Dilla Praditya Hutomo; Sahal, Ahmad; Pramudya, Henang Duta; Khotimah, Khusnul; Putranto, Akhsana Naufal
Jurnal Graha Pengabdian Vol 6, No 4 (2024): DESEMBER
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um078v6i42024p%p

Abstract

This project purposes to design and develop an innovative fruit cutting tool that can be adjusted by its thickness, which called Adjustable Fruit Slicer. This tool is designed to increase efficiency and effectiveness in cutting fruits. The design process was completed through several stages, including market research, concept development, as well as material analysis and manufacturing. This product is designed to be ergonomic, easy to use, and environmentally friendly with the main material being durable stainless steel. With the advantages of a modern and functional design, Adjustable Fruit Slicer is expected to meet the needs of culinary businesses, especially in fruit processing more efficiently and effectively.
Enhancing Web Security Using AES and Twofish Algorithms Ahmad Sahal; Farida Nur Aini; Zaidir Zaidir; Indra Listiawan
International Journal of Informatics and Computation Vol. 7 No. 1 (2025): International Journal of Informatics and Computation
Publisher : University of Respati Yogyakarta, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35842/ijicom.v7i1.98

Abstract

The advancement of information technology has driven the massive adoption of web-based information systems across various sectors. However, this surge in usage has been accompanied by increasingly complex data security threats, such as SQL injection attacks and sensitive information theft. This article proposes a security enhancement strategy through the implementation of encryption at the database and source code levels, focusing on the AES and Twofish algorithms. Web security, particularly through the use of the Advanced Encryption Standard (AES), plays a crucial role in safeguarding sensitive data across various applications. AES, especially in its 256-bit key variant (AES-256), is widely recognized for its robust security features, making it a preferred choice for encrypting data in cloud environments and web applications. The following sections highlight key aspects of AES in web security. The research findings that AES dan Twofish algorithms can provide an optimal balance between security and efficiency, making it a relevant solution for addressing information security challenges in the real application.
Optimasi Unjuk Kerja Memory dalam Bahasa Dart pada Aplikasi Monitoring Pegawai Listiawan, Indra; Aini, Farida Nur; Zaidir, Zaidir; Sahal, Ahmad
JURNAL INFORMATIKA DAN KOMPUTER Vol 9, No 1 (2025): Februari 2025
Publisher : Lembaga Penelitian dan Pengabdian Masyarakat - Universitas Teknologi Digital Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26798/jiko.v9i1.1418

Abstract

Penelitian ini mengeksplorasi dan menganalisis teknik optimisasi kinerja memori dalam bahasa pemrograman Dart, khususnya dalam konteks aplikasi pemantauan karyawan. Mengingat pentingnya pengelolaan memori yang efisien dalam pengembangan aplikasi real-time, penelitian ini berfokus pada penggunaan keyword const untuk meningkatkan performa aplikasi. Hasil eksperimen menunjukkan bahwa penggunaan const menghasilkan waktu proses yang lebih cepat tanpa mengurangi penggunaan memori. Analisis lebih lanjut mengungkapkan bahwa const memungkinkan optimisasi pada waktu kompilasi yang meningkatkan kecepatan eksekusi dengan memastikan objek tidak dapat diubah setelah dibuat. Namun, const tidak mempengaruhi jumlah memori yang dialokasikan untuk objek, menunjukkan bahwa ukuran memori tetap sama terlepas dari penggunaannya. Penelitian ini memberikan wawasan penting tentang bagaimana const dapat digunakan untuk mengoptimalkan performa aplikasi Dart dalam hal kecepatan, meskipun tidak berdampak signifikan pada penggunaan memori. Temuan ini diharapkan dapat memberikan kontribusi signifikan dalam pengembangan aplikasi Dart yang lebih efisien dan responsif, serta memperkaya literatur akademik terkait optimisasi kinerja memori dalam bahasa pemrograman Dart.
Pelatihan Penggunaan LMS untuk Peningkatan Kualitas Layanan Perkuliahan di Fakultas Sains dan Teknologi, Universitas Respati Yogyakarta: Training on Using LMS to Improve the Quality of Lecture Services at the Faculty of Science and Technology, Universitas Respati Yogyakarta Ordiyasa, I Wayan; Sugiarto, Raden Bagus Nurhadi Wijaya; Winardi, Sugeng; Meliala, Dyan Avando; Utari, Evrita Lusiana; Sahal, Ahmad
PengabdianMu: Jurnal Ilmiah Pengabdian kepada Masyarakat Vol. 10 No. 2 (2025): PengabdianMu: Jurnal Ilmiah Pengabdian kepada Masyarakat
Publisher : Institute for Research and Community Services Universitas Muhammadiyah Palangkaraya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33084/pengabdianmu.v10i2.8500

Abstract

Training on the Use of Learning Management Systems (LMS) is essential for enhancing the quality of academic services in an era of increasingly adopting technology. The integration of LMS with conventional methods, known as blended learning, which combines distance learning, regular classes, and LMS, results in a more effective and efficient learning process. With the shift towards digital learning, LMS use becomes crucial for improving the efficiency, accessibility, and quality of academic services. Through e-learning, students not only listen to lectures but also actively observe, perform, demonstrate, and more. Teaching materials can be virtualized in various formats to create more engaging and dynamic content, motivating students to delve deeper into the learning process. This training aims to equip educators and administrative staff with knowledge of LMS features and potential, enabling them to maximize its use for content delivery, facilitating teacher-student interaction, and enhancing course management and evaluation. The training methods include presentations on basic LMS concepts, demonstrations of key features, and hands-on practice sessions that allow participants to actively engage in the learning process. Additionally, interaction between participants and facilitators is enhanced through discussions and Q&A sessions, ensuring deep understanding and practical skills in LMS usage to improve academic service quality. Consequently, this training is expected to provide a solid foundation for educational institutions to meet challenges and leverage the opportunities offered by the digital era in providing quality academic services.
Multi-Step Vector Output Prediction of Time Series Using EMA LSTM Diqi, Mohammad; Sahal, Ahmad; Nur Aini, Farida
JOIN (Jurnal Online Informatika) Vol 8 No 1 (2023)
Publisher : Department of Informatics, UIN Sunan Gunung Djati Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15575/join.v8i1.1037

Abstract

This research paper proposes a novel method, Exponential Moving Average Long Short-Term Memory (EMA LSTM), for multi-step vector output prediction of time series data using deep learning. The method combines the LSTM with the exponential moving average (EMA) technique to reduce noise in the data and improve the accuracy of prediction. The research compares the performance of EMA LSTM to other commonly used deep learning models, including LSTM, GRU, RNN, and CNN, and evaluates the results using statistical tests. The dataset used in this study contains daily stock market prices for several years, with inputs of 60, 90, and 120 previous days, and predictions for the next 20 and 30 days. The results show that the EMA LSTM method outperforms other models in terms of accuracy, with lower RMSE and MAPE values. This study has important implications for real-world applications, such as stock market forecasting and climate prediction, and highlights the importance of careful preprocessing of the data to improve the performance of deep learning models.