Claim Missing Document
Check
Articles

Found 13 Documents
Search

Determination of Supply Chain Performance and Market Performance: Impact of Supply Chain Activities in Indonesian Crude Palm Oil Industry Roespinoedji, Djoko; Violina, Sriyani; Mardiansyah, Viddi; Setijadi, Setijadi; Isa, Azizan Mohamed
International Journal of Supply Chain Management Vol 8, No 2 (2019): International Journal of Supply Chain Management (IJSCM)
Publisher : ExcelingTech

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59160/ijscm.v8i2.2974

Abstract

Supply chain practices are crucial in determining the performance of firms. The current study investigates impact of supply chain practices for determining the market and supply chain performance in crude palm oil industry of Indonesia. The supply chain activities were taken from previous literature including supplier relationship, customer relationships and waste reduction. The objective of the study was to determine the impact of these crucial supply chain activities on market performance and supply chain performance in Indonesian crude palm oil producers. Data was collected from palm oil producers in Jakarta Indonesia, response rate was observed as 77%. The data was analyzed by using AMOS SEM technique. The relationship was examined between constructs and found mixed results, study revealed few practices has significantly associated with market performance and supply chain performance and did not find any significant influence between supplier relation and market performance; waste reduction and market performance was rejected statistically.
Penerapan Natural Language Processing (NLP) di bidang pendidikan Fitrah Rumaisa; Yan Puspitarani; Ai Rosita; Azizah Zakiah; Sriyani Violina
Jurnal Inovasi Masyarakat Vol. 1 No. 3 (2021): Jurnal Inovasi Masyarakat
Publisher : LP2M Universitas Widyatama

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (572.753 KB) | DOI: 10.33197/jim.vol1.iss3.2021.799

Abstract

NLP adalah cabang dari kecerdasan buatan (AI) yang berhubungan dengan melatih komputer untuk memahami, memproses, dan menghasilkan bahasa. Salah satu implementasi NLP yang sangat penting adalah penerapannya di dunia pendidikan. NLP adalah proses yang efektif untuk membantu siswa dalam proses pembelajaran. Menerapkan NLP dalam lingkungan pendidikan tidak hanya membantu dalam mengembangkan proses bahasa yang efektif, tetapi juga penting untuk meningkatkan prestasi akademik. Beberapa penerapan NLP di dunia pendidikan adalah Peringkasan Teks dan Paraphrasing, Tanya Jawab, Chatbot (feedback dari pendidik), Evaluasi Ejaan dan Grammar
DECISION SUPPORT SYSTEM FOR DETERMINING STUDENT ELIGIBILITY TO PARTICIPATE OF MBKM IN THE INFORMATICS STUDY PROGRAM USING AHP AND TOPSIS Yan Puspitarani; Fitrah Rumaisa; Sriyani Violina; Feri Sulianta; Ai Rosita
Jurnal Teknologi Informasi Universitas Lambung Mangkurat (JTIULM) Vol. 8 No. 1 (2023)
Publisher : Fakultas Teknik Universitas Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/jtiulm.v8i1.156

Abstract

To be able to have mastery of various sciences that are useful for experience in the world of work, students are encouraged through the MBKM program. Most students of the Informatics Study Program will choose an internship scheme and independent study in applying for the MBKM. However, the increasing number of students' interest in this program requires the Informatics Study Program to be more selective in analyzing the eligibility of students to take part in the MBKM program it has chosen. For this reason, a decision support system is needed that can assist the study program in determining and assessing the eligibility of these students. This study created a DSS modeling using the Analytical Hierarchy Process (AHP) method and the Technique For Order Preference by Similarity to Ideal Solution (TOPSIS) using 8 criteria.
PENGEMBANGAN UMKM LAUNDRY SEPATU MELALUI DIGITALISASI TRANSAKSI Fitrah Rumaisa; Yan Puspitarani; Sriyani Violina; Feri Sulianta
JURNAL ILMIAH EDUNOMIKA Vol 8, No 1 (2024): EDUNOMIKA
Publisher : ITB AAS Indonesia Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29040/jie.v8i1.12492

Abstract

Computers have become an inseparable part of society's activities, especially in the need to support business processes, so the need for computerized systems has a very essential role in carrying out business processes. However, quite a few still use manual systems in carrying out business activities. As a result, obstacles arise as the business continues to grow due to increasingly large and complex needs. One of them is also experienced in the shoe laundry business which requires complex handling considering the large number of services as the number of consumers increases. In order to meet the needs of existing business processes, a computer-based transactional system is needed to support existing business processes, so that business efficiency and effectiveness can be realized. Further training is also needed due to the transition from manual systems to computer-based systems so that workers can adapt to using computerized systems. precisely on target.
Model Prediksi Risiko Stroke Menggunakan Machine Learning Herlistiono, Iwa Ovyawan; Violina, Sriyani
INTECOMS: Journal of Information Technology and Computer Science Vol 7 No 4 (2024): INTECOMS: Journal of Information Technology and Computer Science
Publisher : Institut Penelitian Matematika, Komputer, Keperawatan, Pendidikan dan Ekonomi (IPM2KPE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31539/intecoms.v7i4.10942

Abstract

Menurut data Badan Penyelenggaraan Jaminan Sosial (BPJS), stroke termasuk dalam empat besar penyakit katastropik, yang membutuhkan biaya tinggi dalam pengobatannya dan memiliki komplikasi yang dapat mengancam jiwa. Sementara itu menurut data Kementerian Kesehatan, sekitar 80% masyarakat Indonesia tidak mengetahui gejala stroke sehingga seringkali penanganan stroke menjadi terlambat. Pada penelitian ini dilakukan penerapan metode machine learning untuk memprediksi risiko penyakit stroke. Machine Learning sudah sering digunakan di bidang kesehatan terutama untuk memprediksi risiko penyakit dan klasifikasi penyakit tertentu berdasarkan data pasien. Pada penelitian ini digunakan data pasien yang tersedia secara publik untuk merancang model prediksi risiko penyakit stroke yang terdiri dari 5000 data. Studi ini memberikan kontribusi penting dalam bidang pencegahan stroke dengan memperkenalkan model prediksi risiko yang dapat membantu identifikasi individu dengan risiko tinggi untuk pengelolaan lebih lanjut. Penerapan model prediksi risiko stroke menggunakan machine learning, diharapkan dapat meningkatkan deteksi dini dan intervensi yang tepat waktu, serta mengurangi beban stroke secara keseluruhan. Selain itu, penelitian ini juga memberikan dasar untuk pengembangan model prediksi risiko stroke yang lebih canggih dan efektif di masa depan.
Deteksi Dan Klasifikasi Citra Kanker Darah Menggunakan Metode Convolutional Neural Network (CNN) Violina, Sriyani; Damayanti, Niken Rosiana; Herlistiono, Iwa Ovyawan
INTECOMS: Journal of Information Technology and Computer Science Vol 7 No 4 (2024): INTECOMS: Journal of Information Technology and Computer Science
Publisher : Institut Penelitian Matematika, Komputer, Keperawatan, Pendidikan dan Ekonomi (IPM2KPE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31539/intecoms.v7i4.10985

Abstract

Leukemia adalah sekelompok kanker darah yang mempengaruhi sel darah tubuh, terutama sel darah putih. Leukemia dapat terbentuk ketika sel darah putih tidak tumbuh sebagaimana mestinya. Untuk menetapkan diagnosis kanker darah, diperlukan pemeriksaan penunjang, berupa tes darah dan biopsi sumsum tulang. Pada tes darah, dokter mencari kelainan dari jumlah sel darah putih. Pengidap leukemia umumnya memiliki kadar sel darah putih lebih banyak dibanding normal. Dalam hal jumlah data yang besar, kesalahan dalam proses diagnosis dapat terjadi karena human error dan hal ini tentunya dapat membahayakan nyawa pasien. Metode deteksi otomatis telah dilakukan dengan menggunakan pengolahan citra maupun segmentasi, serta beberapa metode klasifikasi menggunakan machine learning dan deep learning. Pada penelitian ini menggunakan metode Convolutional Neural Network dengan arsitektur VGG-16. Arsitektur VGG-16 digunakan sebagai arsitektur objek deteksi untuk mendeteksi keberadaan dan menghitung sel Kanker Darah pada data citra. Deteksi objek dilakukan untuk membedakan sel darah putih sehat (normal) dengan sel darah putih yang terkena kanker (sel limfoblas dan non-limfoblas). Performa deteksi yang didapatkan dari penggunaan metode ini berupa nilai akurasi dari training model 20.000 data. Menggunakan nilai learning rate 0,001 dan jumlah epoch 10 menghasilkan model terbaik sebesar 100%. Kata Kunci : Leukemia, Convolutional Neural Network, VGG-16
DEVELOPING AN IT INFRASTRUCTURE MODEL FOR ENHANCING DIGITAL LITERACY THROUGH WEB-BASED LEARNING: A COMPREHENSIVE FRAMEWORK Sulianta, Feri; Rumaisa, Fitrah; Puspitarani, Yan; Violina, Sriyani; Rosita, Ai
JIKO (Jurnal Informatika dan Komputer) Vol 7, No 3 (2024)
Publisher : Universitas Khairun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/jiko.v7i3.8761

Abstract

In today's rapidly evolving educational landscape, there is a growing need to develop an IT infrastructure model that can effectively support web-based learning environments to enhance digital literacy. The proposed model offers a comprehensive framework for educational institutions to integrate digital technologies into their curricula seamlessly. Key elements of the model include essential hardware, user-friendly software, and advanced security measures, each playing a vital role in creating a seamless, secure, and efficient digital learning experience. This study explores the dynamic interactions among these components and their collective influence on fostering a conducive and productive web-based learning environment. By addressing the need for reliable infrastructure, scalable solutions, and robust security protocols, the model provides a holistic approach to improving digital literacy in educational contexts. The research underscores the critical role of a well-structured IT infrastructure in supporting digital education, offering actionable insights and recommendations for implementation. Moreover, it emphasizes that a well-developed IT infrastructure is foundational for the long-term success of web-based learning programs, enabling institutions to meet diverse learner needs, adapt to technological advances, and ensure sustainability in the digital education landscape.
Implementation of Kanban Method in Transactional System Design in the “Mr. Sneakers” Shoe Laundry Business Puspitarani, Yan; Violina, Sriyani; Rumaisa, Fitrah; Sulianta, Feri
Brilliance: Research of Artificial Intelligence Vol. 4 No. 1 (2024): Brilliance: Research of Artificial Intelligence, Article Research May 2024
Publisher : Yayasan Cita Cendekiawan Al Khwarizmi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47709/brilliance.v4i1.3859

Abstract

Laundry information system design using Kanban method is a strategic step to improve operational efficiency and responsiveness to customer needs in the laundry business. The study aims to design an information system that is integrated with the Kanban method to optimize the transaction process from receiving orders to returning to customers. The study outlines the process of designing a laundry information system using Kanban principles, including workflow mapping, suitable Kanban board design and integration with existing information systems. The results of this information system design show that the application of Kanban can provide a clear visualization of the workflow in the process, improve operational efficiency by speeding up the order cycle time, reducing waiting times, and minimizing errors in the transactions process. Good integration between the information system and the Kanban board allows managers to monitor order status in real time and respond quickly to changing customer requests. In conclusion, designing a laundry information system using the Kanban method can improve business performance, strengthen customer relationships, and create significant added value.
Edukasi mengenai Mobile Hacking: Pengenalan dan Mitigasi Puspitarani, Yan; Rumaisa, Fitrah; Violina, Sriyani; Sulianta, Feri; Rosita, Ai
SEIKO : Journal of Management & Business Vol 6, No 2.1 (2023)
Publisher : Program Pascasarjana STIE Amkop Makassar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37531/sejaman.v6i2.5890

Abstract

Data merupakan hal yang berharga dan bersifat pribadi bagi perseorangan maupun perusahaan. Akan tetapi, pencurian data seringkali dilakukan terhadap sistem keamanan data yang memiliki celah. Hacking ini sudah marak dilakukan oleh kalangan muda. Jika tidak diarahkan dengan baik, besar kemungkinan banyak generasi muda yang menjadi pelaku cyber crime. Selain itu, untuk melakukan investigasi terhadap cyber crime, diperlukan juga digital forensic terhadap perangkat. Oleh karena itu, kegiatan pengabdian ini, akan memberikan edukasi kepada para anak SMA sebagai generasi muda dengan harapan agar para generasi muda tidak menjadi korban atau pelaku. Kata Kunci: hacking; forensic; cyber crime.
Privacy-Preserving Healthcare Analytics in Indonesia Using Lightweight Blockchain and Federated Learning: Current Landscape and Open Challenges Mardiansyah, Viddi; Bayuaji, Luhur; Herlistiono, Iwa Ovyawan; Violina, Sriyani; Purnama, Adi; Prasetyo, Bagus Alit; Huynh, Phuoc-Hai
Indonesian Journal of Electronics, Electromedical Engineering, and Medical Informatics Vol. 7 No. 2 (2025): May
Publisher : Jurusan Teknik Elektromedik, Politeknik Kesehatan Kemenkes Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35882/ijeeemi.v7i2.63

Abstract

Healthcare data are invaluable assets in today’s digital age; however, they are also highly vulnerable to misuse, breaches, and unauthorized access. The global healthcare sector faces a significant dilemma: To leverage exceptionally enormous and heterogeneous datasets, the protection of patient privacy must be ensured while simultaneously improving medical services and public health understanding. In recent years, blockchain technology has emerged as a promising solution to manage healthcare data in a decentralized, transparent, tamperproof, as well as secure way. However, several natural limitations often obstruct many conventional blockchain systems. These limitations include scalability issues, high energy consumption, in addition to increased latency, and they can greatly impede practical adoption in resource-limited settings, particularly in developing countries such as Indonesia. These many limitations considerably spurred developers to create lightweight blockchain frameworks. These frameworks aim to retain all of the core benefits of blockchain, such as its immutability in addition to traceability, and optimize both performance and efficiency. In the event that an individual integrates the proposed system by means of federated learning, which allows training of machine learning models across distributed data sources without data privacy being compromised, the system subsequently offers a compelling solution for healthcare analytics that preserves privacy in its entirety. This paper explores integrated technologies in Indonesian healthcare and highlights their potential and limitations. This study discusses how data can improve services while protecting patient confidentiality despite increasing cyber threats. It also considers regional policies like the Personal Data Protection Law and the BPJS health insurance. Identified are certain open challenges, in addition to particular future research directions, for the purpose of addressing the practical, technical, and regulatory hurdles that must be overcome to realize secure and privacy-aware healthcare analytics in Indonesia.