Claim Missing Document
Check
Articles

Found 13 Documents
Search

Pengaruh Pendapatan, Social Influence, dan Kondisi Ekonomi Makro Terhadap Keputusan Pembelian pada E-Commerce Kusuma, Tubagus Mahendra; Suniantara, I Ketut Putu
Perspektif : Jurnal Ekonomi dan Manajemen Akademi Bina Sarana Informatika Vol 20, No 1 (2022): Maret 2022
Publisher : www.bsi.ac.id

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31294/jp.v20i1.11767

Abstract

Penelitian ini bertujuan untuk menguji pengaruh pendapatan, social influence, dan persepsi akan kondisi ekonomi makro terhadap keputusan pembelian pada e-commerce yang dilakukan oleh konsumen melalui penyebaran kuesioner secara daring. Populasi dalam penelitian ini adalah konsumen yang sudah berkeluarga atau berumah tangga dengan kriteria usia maksimal 35 tahun yang melakukan pembelian barang melalui e-commerce kemudian diambil sampel sebanyak 80 orang yang diperoleh dengan prosedur purposive sampling. Sumber data primer merupakan hasil pengisian kuisioner yang berjumlah 80 responden. Metode yang digunakan dalam penelitian ini adalah deskriptif kuantitatif. Metode analisis dalam penelitian ini menggunakan regresi linier berganda untuk mengetahui pengaruh secara parsial maupun secara simultan. Simpulan dari hasil analisis adalah Secara parsial terdapat pengaruh negatif dan signifikan pendapatan terhadap keputusan pembelian. Secara parsial terdapat pengaruh yang signifikan variabel social influence dan variabel ekonomi makro terhadap keputusan pembelian. Secara simultan dengan nilai Fhitung (15,632) > Ftabel(3,12) dengan sig. 0,000 variabel pendapatan, social influence, dan ekonomi makro secara bersama-sama berpengaruh signifikan terhadap keputusan pembelian produk melalui e-commerce.
SISTEM KLASIFIKASI GAMELAN BALI BERBASIS WEBSITE Novianti, Kadek Dwi Pradnyani; Rakasuya, I Made Aray Matal; Suniantara, I Ketut Putu
Jurnal Sistem Informasi dan Bisnis Cerdas Vol. 16 No. 2 (2023): Agustus 2023
Publisher : Program Studi Sistem Informasi, Fakultas Ilmu Komputer, UPN "Veteran" Jawa Timur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33005/sibc.v16i2.192

Abstract

Gamelan Bali merupakan salah satu warisan budaya yang masih dijaga dengan sangat baik keberadaannya sampai saat ini. Gamelan Bali berperan dalam kehidupan keagamaan di Bali, selain itu juga digunakan dalam pementasan dan seni pertunjukan. Di Bali, telah ditemukan 30 jenis perangkat Gamelan Bali dan digolongkan ke dalam beberapa jenis Gamelan. Di era globalisasi saat ini, masih sedikit pengetahuan serta pemahaman masyarakat khususnya di Bali terhadap gamelan tradisional Bali. Diperlukan suatu media yang mampu memaparkan informasi terkait Gamelan Bali secara digital yang dapat diakses oleh masyarakat secara luas dimanapun dan kapanpun. Maka dari itu, dibangun sebuah sistem klasifikasi berbasis website untuk mengklasifikan perangkat-perangkat gamelan ke dalam jenisnya. Sistem ini dibangun menggunakan model waterfall. Hasil yang diperoleh adalah suatu sistem yang mampu mengkalsifikasikan dan memberi informasi tentang gamelan Bali kepada masyarakat umum agar dapat dipelajari, dipahami, dan dilestarikan.
Sistem Informasi e-Tourism Ekowisata Hutan Mangrove Sebagai Media Promosi Pariwisata Bali Berbasis Android Saputra, Kadek Surya Adi; Suniantara, I Ketut Putu
JTIM : Jurnal Teknologi Informasi dan Multimedia Vol 5 No 3 (2023): November
Publisher : Puslitbang Sekawan Institute Nusa Tenggara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35746/jtim.v5i3.364

Abstract

The province of Bali has many exotic and interesting tourist areas to be visited by domestic and foreign tourists. One example is Taman Raya Hutan (Mangrove) one of the ecotourism tourist destinations in the Province of Bali. Based on data from the Bali Provincial Statistics Center, tourist arrivals to Indonesia have decreased by 7.62% due to the COVID-19 pandemic. One of the impacts affected by the decrease is the object Mangrove ecotourism in Ngurah Rai Bali Tahura which is only able to attract 1,000 visits in 2020 based on the results of interviews that have been conducted. From the results of these problems, it is necessary to build an e-tourism information system as a means of providing information and as a forum for the promotion of mobile technology-based Grand Forest Park (Mangrove) tourism objects, which is an effort to develop a strategy to promote Ngurah Rai Grand Forest Park (Mangrove) ecotourism as an effort to restore the tourism industry. This information system contains text, images, audio, and video and is supported by an attractive and user-friendly display design. This system development method uses the Software Development Life Cycle which consists of the concept stage, application design, the testing stage. This system testing phase uses the whitebox testing method and a direct questionnaire survey with 10 respondents in the test, The results of testing this system get a value of 81.43% which indicates that the system is running well and is acceptable. Through the results of the test data, it is hoped that it can become an alternative promotional medium to increase the number of tourists or customers to visit the Ngurah Rai Bali mangrove forest.
Comparison of Sentiment Analysis Algorithms with SMOTE Oversampling and TF-IDF Implementation on Google Reviews for Public Health Centers Budaya, I Gede Bintang Arya; Suniantara, I Ketut Putu
MALCOM: Indonesian Journal of Machine Learning and Computer Science Vol. 4 No. 3 (2024): MALCOM July 2024
Publisher : Institut Riset dan Publikasi Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.57152/malcom.v4i3.1459

Abstract

Sentiment analysis, or opinion mining, is a key area of natural language processing that identifies sentiments in free text. As digital business services grow and user-generated content increases, analyzing sentiments in online reviews is vital for enhancing business operations and customer satisfaction. This study focuses on sentiment analysis of user reviews from Google Reviews for Public Health Centers (PHCs) in Bali, Indonesia, using five machine learning models: Logistic Regression, Support Vector Machine (SVM), XGBoost, Naive Bayes, and Random Forest. These models classified sentiments into positive and negative categories using a dataset balanced with SMOTE to improve accuracy. We divided a total of 1.834 reviews, using 20% for testing and 80% for training, to ensure a thorough evaluation under real-world conditions. Logistic Regression and Naive Bayes performed best, both achieving an accuracy of 0.89, with Logistic Regression providing a balanced precision and recall. The study enhances academic understanding of sentiment analysis in healthcare and offers insights for business administrators on handling online customer feedback. The findings stress the importance of choosing suitable machine learning techniques based on specific data characteristics and project requirements to optimize both technological and business outcomes.
Strategi Komunikasi Pemasaran Afiliator dalam Menarik Minat Belanja Konsumen Pada Sebuah Produk di Marketplace Dewa Ayu, Dewa Ayu Mirna Wati; Suniantara, I Ketut Putu; Sastrawan, I Nengah Oka
Widya Duta: Jurnal Ilmiah Ilmu Sosial Budaya Vol 19 No 2 (2024): Widya Duta September 2024
Publisher : UHN IGB Sugriwa Denpasar

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25078/wd.v19i2.3935

Abstract

Social media is a digital platform that facilitates its users to facilitate interactive social interactions. Social media is also an effective way to market products and services widely which can increase sales and advance business. In an effort to attract visitors to open and even shop on an e-commerce platform, of course it cannot be separated from the many people who influence (poison) promotions with advertisements on various social media so that many people are interested in visiting the e-commerce and even to buy the products they sell. In order to convey information and other interests, a person or group of people who are considered influential are needed to guide opinions and voice marketing interests such as promotions. Currently, many new professions have emerged, as a result of the high number of social media users in Indonesia, one of which is content creator. A content creator is someone who focuses on creating content, whether in the form of writing, images, videos, podcasts, or other forms. Currently, many content creators have joined affiliates to earn commissions. Affiliates will get a commission based on their performance in promoting Shopee products and sharing affiliate links. Therefore, this research is very interesting to research because it is to find out what kind of strategies are used by Shopee affiliates in promoting products. The research method used is a qualitative descriptive method with the aim of understanding the marketing communication strategies used by Shopee affiliates and what the results of the strategies that have been implemented are
Comparison of VIKOR and TOPSIS Methods in Multiresponse Taguchi Optimization Suniantara, I Ketut Putu; Putra, I Gede Eka Wiantara
Journal of Education Reseach and Evaluation Vol 2 No 3 (2018): August
Publisher : LPPM Undiksha

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (671.315 KB) | DOI: 10.23887/jere.v2i3.12796

Abstract

Multirepon optimization in the Taguchi method can be done by using the VIKOR and TOPSIS approach, which are based on the concept that the best chosen alternative not only has the shortest distance from a positive ideal solution, but also has the longest distance from the negative ideal solution. The basic concept of these two methods is to determine the ranking of existing samples by looking at the results of the utility (S), regrets (R) and solution distances as the best alternatives for each sample. This study aims to obtain significant process variables on the brightness and soreness response variables in the envelope making process by using VIKOR and TOPSIS method approaches, and comparing the results of VIKOR and TOPSIS optimization. The results showed that the two methods produced process optimization in setting variables that were not the same. The VIKOR method produced a setting variable namely A3B2C1D1 while the TOPSIS method produced a setting variable A1B1C3D3. Looking at the value of the two methods, the VIKOR method produced a better estimated value of the brightness parameters and TOPSIS produced a better estimate value for the silence parameter.
Analysis of UT Student Satisfaction with the Tuweb system using CSI, IPA & SEM-PLS Masakazu, Kadek; Sopandi , Agus Tatang; Wijaya, I Gusti Ngurah Satria; Suwardika, Gede; Suniantara, I Ketut Putu
Journal of Education Reseach and Evaluation Vol 7 No 3 (2023): August
Publisher : LPPM Undiksha

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23887/jere.v7i3.66621

Abstract

One form of development in the world of learning as a result of developments in information and communication technology (ICT) is that distance learning is possible. The Open University, a public university, uses various modes of learning has also experienced changes in the modes of learning for students who decide to study in person during class. Coupled with the Covid-19 pandemic, this change is a change in the learning system from the TTM mode which is replaced by Tuweb (blended learning that is held online). This study aims to analyze user or UT student satisfaction with the Tuweb system using the Servqual dimension. The data source came from the UT student population at UPBJJ UT Denpasar, where the determination of respondents was carried out using a purposive sampling technique. The Customer Satisfaction Index (CSI), Importance Performance Analysis (IPA), and Structural Equation Modeling (SEM) using Partial Least Squares (PLS-SEM) are the analytical techniques used. The results of the slices of the three methods (CSI, IPA and SEM-PLS) is that Tuweb UT's services get quite satisfied ratings from students, where the variable that gives excellence to Tuweb UT is empathy. As a note for improving the tuweb service from UT, the Tuweb service has the availability of a learning service response at any time and place (responsiveness variable) and the Tuweb service has better speed accuracy than the promised speed accuracy (reliability variable).
Seleksi Pemilihan Calon Penerima Beasiswa Bidikmisi Mahasiswa Universitas Terbuka dengan Metode TOPSIS Suwardika, Gede; Suniantara, I Ketut Putu
International Journal of Natural Science and Engineering Vol. 2 No. 2 (2018): July
Publisher : Lembaga Penelitian dan Pengabdian kepada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (469.704 KB) | DOI: 10.23887/ijnse.v2i2.17152

Abstract

Proses seleksi penerima beasiswa bidikmisi melibatkan banyak pertimbangan/syarat sebagai suatu kriteria. Oleh karena banyaknya kriteria yang digunakan hal ini menjadi permasalahan tersendiri, sehingga memerlukan penyelesaian, sebagai pendukung keputusan dengan multikriteria. Salah satu konsep dasar pendukung keputusan dengan multikriteria adalah metode TOPSIS, yang didasarkan pada konsep dimana alternatif terpilih yang terbaik tidak hanya memiliki jarak terpendek dari solusi ideal positif, namun juga memiliki jarak terpanjang dari solusi ideal negatif. Penelitian ini bertujuan untuk menerapkan metode TOPSIS pada penyeleksian penerima beasiswa bidikmisi yang dapat digunakan untuk membantu bagian kemahasiswaan dalam menentukan rekomendasi penerimaan beasiswa di Universitas Terbuka dengan mempertimbangkan berbagai kriteria yang telah ditentukan. Adapun kriteria yang digunakan dalam penelitian ini yaitu potensi akademik dan prestasi, kemampuan ekonomi, komitmen, urutan kualitas sekolah, representasi sekolah dan representasi asal daerah. Hasil penelitian menunjukkan bahwa metode TOPSIS dapat digunakan untuk membantu proses seleksi dan menentukan penerima beasiswa yang tepat. Perbedaan rangking yang terjadi disebabkan oleh nilai skor dari beberapa kriteria yang saling berdekatan.
The Mediating Role of Brand Image in the Relationships between Interactivity, Electronic Word of Mouth (E-WOM), and Purchase Intention among Generation Z Masakazu, Kadek; Wijaya, I Gusti Ngurah Satria; Suwardika, Gede; Suniantara, I Ketut Putu
Binus Business Review Vol. 16 No. 1 (2025): Binus Business Review
Publisher : Bina Nusantara University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21512/bbr.v16i1.12080

Abstract

The world is still evolving, and in this era of disruption, everything is based on digital technology. A new phenomenon has emerged in the business world in recent years, namely the bankruptcy of a number of large companies in Indonesia like Giant and the closure of several Carrefour outlets and Matahari Department Store. The research aimed to analyze the effect of interactivity and Electronic Word of Mouth (E-WOM) on the intention to purchase Erigo products with the brand image as a mediating variable on Generation Z in Denpasar City. As the respondents, 208 samples from Denpasar City’s Generation Z population were selected using a purposive selection technique. The analysis method used was Structural Equation Modeling (SEM) through Partial Least Squares (PLS-SEM). As a result, Generation Z in Denpasar City is positively and significantly influenced by brand image, E-WOM, and interactivity when it comes to their intention to buy Erigo fashion items. When it comes to the purchase intention for Erigo products, brand image has the ability to mediate the impact of TikTok interactivity and E-WOM. The managerial implications include the need for Erigo management to focus on the factors influencing potential customers’ decisions to purchase Erigo products, specifically interactivity, E-WOM, and brand image.
ANALISIS RANDOM FOREST PADA KLASIFIKASI CART KETIDAKTEPATAN WAKTU KELULUSAN MAHASISWA UNIVERSITAS TERBUKA Suwardika, Gede; Suniantara, I Ketut Putu
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 13 No 3 (2019): BAREKENG: Jurnal Ilmu Matematika dan Terapan
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (165.336 KB) | DOI: 10.30598/barekengvol13iss3pp177-184ar910

Abstract

Classification and Regression Tree (CART) is one of the classification methods that are popularly used in various fields. The method is considered capable of dealing with various data conditions. However, the CART method has weaknesses in the classification tree prediction, which is less stable in changes in learning data which will cause major changes in the results of the classification tree prediction. Improving the predictions of the CART classification tree, an ensemble random forest method was developed that combines many classification trees to improve stability and determine classification predictions. This study aims to improve CART predictive stability and accuracy with Random Forest. The case used in this study is the classification of inaccuracies in Open University student graduation. The results of the analysis show that random forest is able to increase the accuracy of the classification of the inaccuracy of student graduation that reaches convergence with the prediction of classification reaching 93.23%.