Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

High-accuracy classification of banana varieties using ResNet-50 and DenseNet-121 architectures Riska, Suastika Yulia; Sulistyo, Danang Arbian; Siti Maharani, Farah Shafiyah
Indonesian Journal of Electrical Engineering and Computer Science Vol 39, No 1: July 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v39.i1.pp322-335

Abstract

Bananas are a popular fruit in Indonesia due to their affordability, availability, and rich nutritional content. Identifying different banana types is crucial for consumption and processing, yet some types are difficult to distinguish visually. This study aims to classify banana types using convolutional neural network (CNN) architectures, specifically ResNet-50 and DenseNet-121. The dataset consists of five banana classes, which were processed using preprocessing techniques to enhance image quality prior to model training. The results demonstrate that the proposed models can classify banana types with high accuracy. The research methodology includes data collection, preprocessing, CNN model implementation, and performance evaluation using a confusion matrix. The dataset was split into training and testing sets in an 80:20 ratio, with validation data extracted from the training set in a 90:10 ratio. The models were trained on the training data, validated with validation data, and tested on the testing data to assess final performance. The study concludes that the CNN architectures employed are effective in classifying banana types, with the DenseNet-121 model achieving 93.02% accuracy, outperforming the ResNet-50 model, which achieved 92.44%. These results indicate that the models can capture essential features from banana images and produce accurate predictions.