Claim Missing Document
Check
Articles

Found 2 Documents
Search

Unrevealing the Impact of Annealing Condition on Catalytic Activity of PtNi Alloy Electrode Towards Oxygen Reduction Reaction Wardhani, Anindya Pramudya; Tanaya, Salwaa; Pravitasari, Retna Deca; Damisih, Damisih; Arti, Dewi Kusuma; Rahayu, Sri; Gumelar, Muhammad Didik; Fidiani, Elok
Indonesian Journal of Chemistry Vol 25, No 2 (2025)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.99297

Abstract

Alloying platinum (Pt) with transition metals such as nickel (Ni) has been an effective approach for reducing Pt loading and enhancing catalytic activities towards the sluggish oxygen reduction reaction (ORR) on the cathode of proton exchange membrane fuel cell (PEMFC). In this work, we advance the fabrication of PtNi alloy electrodes through direct synthesis on the gas diffusion layer (GDL) utilizing wet chemical reduction methods. The catalytic activities and binding interaction between Pt and Ni are optimized through annealing PtNi electrodes at 200 °C under different gas flows of N2 and the mixture of H2/N2 at 5%/95%. The physical characterization using X-ray diffraction (XRD) analysis and scanning electron microscope-energy dispersive X-ray spectroscopy (SEM-EDX) show the significant effect of the annealing environment on the morphology and distribution of the PtNi alloy catalyst on the GDL surface. The optimized electrodes exhibited enhanced ORR mass activity, with values of 8.17 and 18.26 mA mg−1 for PtNi annealed with N2 and N2/H2, respectively, surpassing the benchmark Pt/C (5.25 mA mg−¹). These results underscore the critical role of the annealing environment in optimizing the catalytic performance of PtNi-based electrodes for PEMFC applications, offering insights into more efficient fuel cell technologies.
The Calcination Temperature Effect on Crystal Structure of LiNi1/3Mn1/3Co1/3O2 Cathode Material for Lithium-Ion Batteries Rahayu, Sri; Saudi, Aghni Ulma; Tasomara, Riesma; Gumelar, Muhammad Dikdik; Utami, Wahyu Tri; Hapsari, Ade Utami; Raharjo, Jarot; Rifai, Abdulloh; Khaerudini, Deni Shidqi; Husin, Saddam; Saputra, Dita Adi; Yuliani, Hanif; Andrameda, Yurian Ariandi; Taqwatomo, Galih; Arjasa, Oka Pradipta; Damisih, Damisih; Hardiansyah, Andri; Pravitasari, Retna Deca; Agustanhakri, Agustanhakri; Budiman, Abdul Hamid
Journal of Batteries for Renewable Energy and Electric Vehicles Vol. 1 No. 02 (2023): NOVEMBER 2023
Publisher : NBRI Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59046/jbrev.v1i02.22

Abstract

The lithium-ion battery has gained popularity among other secondary batteries for portable electronic devices and electric vehicle applications, especially the LiNi1/3Co1/3Mn1/3O2 or NMC111, considering its well-balanced configuration resulting in stable and safe electrochemical performance. NMC111 has been successfully prepared using a coprecipitation process at calcination temperatures from 800 to 950°C. The physical characteristics were investigated using X-Ray Diffraction (XRD), Scanning Electron Microscopy-Energy Dispersive Spectroscopy (SEM-EDS), and Particle Size Analysis (PSA). The XRD patterns showed the rhombohedral single phase for all calcination temperatures. Meanwhile, higher calcination temperatures offer higher degree of crystallinity, lower intensity ratio and more undesirable cation mixing. The particles with a uniform rectangle or pyramid shape are observed at the calcination temperature range from 800 to 900°C. However, bigger submicron particles with a rectangle or pyramid shape are detected at a higher temperature (950°C). The SEM-EDS mapping shows the homogeneity composition for all variation calcination temperatures. PSA analysis showed that calcination temperature at 800 and 850°C gives the particle less than 400 nm suggesting a potential material for a cathode of lithium-ion batteries.