Claim Missing Document
Check
Articles

Found 10 Documents
Search

INFLUENCE OF MEDIA COMMUNICATION ON ATTITUDES AND KNOWLEDGE PREGNANT WOMEN CONSUMING FE TABLET IN THE MATERNITY CLINIC DELTA MUTIARA SIDOARJO Faristasari, Evvin
Journal of Islamic Pharmacy Vol 2, No 1 (2017): J. Islamic Pharm.
Publisher : Universitas Islam Negeri Maulana Malik Ibrahim Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18860/jip.v2i1.4246

Abstract

The effectiveness of learning and teaching processes are influenced by the precision of the use of methods and media used. The role of Fe tablet in pregnancy is very important for the health of the mother or her fetus. This research aims to know the influence of the communications media towards the knowledge and attitude to pregnant mothers in consuming Fe tablets in Maternity Clinic Delta Mutiara Sidoarjo.This type of research is a true experimental design with pretest-posttest Design. The treatment using the the extension with lectures and outreach with leaflets. The population of as many as 40 people, the sample as many as 36 people, the sampling technique used simple random sampling of each group is made up of 18 people aged 20-25 years old and high school education. Tested with Chi-Square.In the control group, pregnant women who have good knowledge score of 33,33% and obtained results of 44,44% are being received while on a group of experiments, pregnant women are knowledgeable well as much 77,78% and obtained results 93,03% of pregnant women who received. The research result obtained from X2 to calculate X2 table (7.85 5) on knowledge so Ho denied and H1 are accepted. On the attitude of expectant mothers count X2 X2 tables (4.98 3.84), so Ho denied and H1 are accepted. From the results of this research it can be concluded that there is an influence of media communication to knowledge and attitude of pregnant women to consume Fe tablets.Keywords: leaflets, Fe tablet, knowledge, attitude
HUBUNGAN PENGETAHUAN TENTANG GROWTH SPURT DENGAN SIKAP IBU MENYUSUI DALAM PEMBERIAN ASI PADA BAYI USIA 7-10 HARI Faristasari, Evvin; Wulandari, Siswi; Amin, Fita Avrista Vilusi
Journal of Islamic Medicine Vol 3, No 1 (2019): Journal of Islamic Medicine
Publisher : Faculty of Medicine and Health Science, Universitas Islam Negeri Maulana Malik Ibrahim

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (576.649 KB) | DOI: 10.18860/jim.v1i4.7084

Abstract

Latar belakang: Banyak faktor yang berpengaruh dalam kegagalan ASI eksklusif. Misalnya istilah ASI tidak cukup, disini faktor ibu adalah peran utama dalam pemberian ASI kepada buah hatinya. Pada usia tertentu bayi mengalami percepatan pertumbuhan (growth spurt) atau disingkat GS. Bayi mengalami percepatan pertumbuhan pada usia 7-10 hari, 2-3 minggu, 4-6 minggu, 3 bulan, 6 bulan, 9 bulan atau lebih, atau bisa juga di waktu-waktu yang lainnya. Salah satu RSIA di Kota Malang ini memiliki kebijakan fasilitas rawat gabung antara ibu dan bayinya yang baru dilahirkan. Kebijakan ini secara langsung dapat mendukung proses pemberian ASI secara ekslusif. Metode Penelitian: penelitian ini merupakan analitik korelasional. Karakteristik responden dalam penelitian ini diklasifikasikan berdasarkan usia ibu, pendidikan ibu, dan paritas ibu. Terdapat 30 responden yang ikut serta dalam penelitian ini. Hasil: Hasil tabulasi silang dapat diketahui bahwa  p-value α (0,024 0,05) dan simpulkan Ho ditolak dan H1 diterima yang menyatakan bahwa ada hubungan pengetahuan tentang growth spurt (percepatan pertumbuhan) dengan sikap ibu menyusui dalam pemberian asi pada bayi usia 7-10 hari dengan tingkat kepercayaan sebesar 95 %. Kesimpulan: tingkat pengetahuan ibu tentang growth spurt berhubungan dengan sikap ibu menyusui dalam pemberian asi pada bayi usia 7-10 hari.Kata Kunci : growth spurt, RSIA, ASI eksklusif, sikap ibu menyusui
Vehicle Theft Detection Using YOLO Based on License Plates and Vehicle Ownership Bradika Almandin Wisesa; M. Hizbul Wathan; Evvin Faristasari; Sirlus Andreanto Jasman Duli; Silvia Agustin; Better Swengky
International Journal of Informatics and Computation Vol. 7 No. 1 (2025): International Journal of Informatics and Computation
Publisher : University of Respati Yogyakarta, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35842/ijicom.v7i1.105

Abstract

Detection of vehicle theft requires innovative approaches to address an increasing number of cases in Indonesia. This study presents a YOLOv11-based system for detecting vehicle theft by combining real-time object detection with a vehicle ownership database. The proposed system identifies license plates, detects vehicle owners using facial recognition, and analyzes suspicious activity to determine theft occurrences. The proposed method can produce model effectiveness with an accuracy = 70%. Key improvements in architecture, including enhanced feature fusion and dynamic anchor assignment, contribute to the object’s detection in complex environments. This research can be a potential technique to provide efficient, scalable, and real-time security solutions in dynamic surveillance applications.
Simulation of Solar Panel Design as an Energy Source for Catfish Ponds Maulana, Ade Putra; Duli, Sirlus Andreanto Jasman; Istoto, Enggar Hero; Peprizal, Peprizal; Faristasari, Evvin
Journal of Technology and Engineering Vol 3 No 1 (2025): Journal of Technology and Engineering
Publisher : Yayasan Banu Haji Samsudin

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59613/journaloftechnologyandengineering.v3i1.214

Abstract

The increasing demand for sustainable energy solutions has driven the adoption of solar photovoltaic (PV) systems in various industries, including aquaculture. This study designs and simulates a solar power system for small-scale catfish (Lele) pond operations using the System Advisor Model (SAM). The methodology includes assessing energy requirements, selecting system components, conducting simulations, and performing an economic feasibility analysis. The results indicate that the designed 12-panel, 3-battery solar system effectively meets the pond’s daily energy demand while ensuring continuous operation during low sunlight conditions. The SAM simulation confirms stable electricity generation throughout the year, with seasonal variations minimally affecting efficiency. The economic analysis reveals that PLTS costs Rp. 150,365 per month, compared to Rp. 151,620 for PLN electricity, showing small but valuable long-term savings. Despite the high initial investment, solar power offers price stability, energy independence, and reduced reliance on fossil fuels. This study demonstrates that solar energy is a viable, cost-effective, and sustainable alternative for aquaculture operations. Future research should focus on optimizing system efficiency and integrating hybrid energy solutions to further enhance performance and financial benefits.
Penerapan YOLOv11 untuk Penghitungan Otomatis Jumping Jack pada Video Latihan Fisik Wisesa, Bradika Almandin; Putri, Vivin Mahat; Faristasari, Evvin; Duli, Sirlus Andreanto Jasman; Irawan, Indra; Agustin, Silvia
Jurnal Pengembangan Sistem Informasi dan Informatika Vol. 6 No. 3 (2025): Jurnal Pengembangan Sistem Informasi dan Informatika
Publisher : Training & Research Institute - Jeramba Ilmu Sukses

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47747/jpsii.v6i3.2795

Abstract

The Jumping Jack Counter is an image processing-based application developed to automatically count the number of jumping jack movements in exercise videos. This study aims to implement the YOLOv11 model to detect and count jumping jack movements by analyzing body posture. YOLOv11 is utilized to identify body positions categorized into two main classes: "open" (arms and legs spread apart) and "closed" (arms and legs together). The dataset consists of 15,000 video frames collected from various exercise videos, with research stages including data collection, data labeling, preprocessing, model training, and testing. The results demonstrate that YOLOv11 achieves a 92% accuracy rate in counting jumping jack movements. These findings are expected to assist coaches and users in monitoring physical exercise in real-time, thereby enhancing training effectiveness. The majority of movement detections (78%) were for the open position, followed by the closed position (20%), with 2% detection errors attributed to lighting variations or camera angles. [1].
Laplacian Kernel and Deep Learning for Palmprint Classification Duli, Sirlus Andreanto Jasman; Wisesa, Bradika Almandin; Faristasari, Evvin; Peprizal, Peprizal; Putri, Vivin Mahat; Fadila, Resma
Journal of Artificial Intelligence and Software Engineering Vol 5, No 2 (2025): Juni On-Progress
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jaise.v5i2.6978

Abstract

Palmprint classification is a robust biometric method for personal identification due to its uniqueness and stability. This study explores the use of deep learning combined with the Laplacian Kernel and Deep Morphological Processing Network (DMPN) for palmprint classification. We trained the proposed system on a dataset of palmprint images collected from 10 participants, each contributing 10 palm images. The results demonstrated that the model achieved an accuracy of 90%, with weighted precision, recall, and F1-score all at 0.9007, indicating a well-balanced classification performance. Additionally, the model achieved a weighted precision of 0.9045, emphasizing its ability to minimize false positives. The average Equal Error Rate (EER) of 0.0917 indicates an effective balance between the false acceptance rate (FAR) and false rejection rate (FRR). The system was tested under various conditions, including different orientations, lighting, and backgrounds, demonstrating its robustness in real-world scenarios. This study also compares the results with recent palmprint classification techniques, such as deep learning, GANs, and few-shot learning, and discusses potential improvements, including incorporating multi-spectral data fusion and few-shot learning to enhance performance in real-world applications.
Preventive Attendance Record using Photo from Mobile Phone and Printed Paper using CNN Wisesa, Bradika Almandin; Mahat Putri, Vivin; Faristasari, Evvin; Jasman Duli, Sirlus Andreanto; Agustin, Silvia
J-INTECH ( Journal of Information and Technology) Vol 13 No 01 (2025): J-Intech : Journal of Information and Technology
Publisher : LPPM STIKI MALANG

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32664/j-intech.v13i01.1927

Abstract

Face-based attendance systems are increasingly popular for their ease of use, but they are susceptible to fraud, such as using photos or videos for unauthorized attendance. This study introduces a digital attendance system that combines facial recognition with liveness detection powered by Convolutional Neural Networks (CNN). Liveness verification is achieved by analyzing subtle movements and responses to ambient lighting. The dataset includes 30 facial images, encompassing both authentic and fraudulent samples. Testing demonstrates a facial recognition accuracy of 91.3% and effective spoofing detection in static and dynamic settings. This system provides a secure, fraud-resistant attendance solution ideal for educational and corporate settings. Further enhancements are suggested to improve performance across diverse facial expressions and lighting conditions.
PROTOTYPE ALAT MONITORING KESEHATAN PASIEN DAN PEMANGGIL PERAWAT BERBASIS INTERNET OF THINK (IOT) Daniel, Rodo; Sukma, Shafril Muliawan; Yudhi, Yudhi; Faristasari, Evvin
Prosiding Seminar Nasional Inovasi Teknologi Terapan Vol. 5 (2025): Prosiding Seminar Nasional Inovasi Teknologi Terapan
Publisher : Politeknik Manufaktur Negeri Bangka Belitung

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Nurse response systems rely heavily on the speed of information delivery and mobility. However, many hospitals still use wired call systems with static monitors, limiting mobility and delaying quick responses. This study designs an Internet of Things (IoT)-based nurse call system to monitor patient conditions in real-time and send notifications to nurses' smartphones via the Blynk application. The MAX30102 sensor is used to measure patients’ heart rate (BPM) and blood oxygen levels (SpO₂), while the RFID RC522 module records nurse presence. Test results show the system can accurately send notifications and log data, thus improving response time, efficiency, and the overall quality of nursing services.
Perencanaan Sistem PLTS Off-Grid Untuk Kebutuhan Energi Listrik Pada Perkebunan Kelapa Sawit Peprizal, Peprizal; Maulana, Ade Putra; Jasman Duli, Sirlus Andreanto; Faristasari, Evvin; Hero Istoto, Enggar
Jurnal Inovasi Teknologi Terapan Vol. 3 No. 2 (2025): Jurnal Inovasi Teknologi Terapan
Publisher : Politeknik Manufaktur Negeri Bangka Belitung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33504/jitt.v3i2.346

Abstract

Palm oil plantations are one of the important sectors in the growth of the economy in Indonesia. One of the palm oil plantation areas in the Pasaman Barat Regency is being developed with an estimated land area of 100 hectares. However, due to the location of the land being far from settlements, there is currently no electricity supply that can be used for the operational needs of the land. This research provides a solution for the planning of an Off-Grid solar power plant (PLTS). The method used is a descriptive method with a quantitative research type. Based on the calculations, the number of PV panels obtained was 14 units and produces a total power of 2.397,89 W, SCC capacity calculation obtained 35 A, Battery capacity 12V/100Ah 2 units, and inverter 3 kW to produce AC voltage. The calculation of the Bill of Quantities (BoQ) for material needs amounts to Rp. 21.986.000. This result indicates that the planning of the solar power system is feasible for the long-term operational needs of the plantation, which only requires initial construction capital.
Developing an NLP-Based Chatbot for Waste Management Education in Sungailiat Wisesa, Bradika Almandin; Mahat Putri, Vivin; Faristasari, Evvin; Jasman Duli, Sirlus Andreanto; Lionza, Rahmat
Journal of Artificial Intelligence and Software Engineering Vol 5, No 3 (2025): September
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jaise.v5i3.7522

Abstract

Penelitianinimemaparkanpengembangan dan evaluasi menyeluruh terhadap chatbot berbasis Natural Language Processing (NLP) yang dirancang untuk meningkatkan pendidikan pengelolaan sampah di Bank Sampah Sungailiat, Indonesia. Dengan mengintegrasikan logika fuzzy untuk pencocokan Pertanyaan yang Sering Diajukan (FAQ) secara akurat dan memanfaatkan model NLP berbasis transformer, DialoGPT-medium, chatbot inimemberikan respons yang relevan secara kontekstual terhadap pertanyaan pengguna mengenaioperasional bank sampah, termasuk pemilahan sampah, proses daur ulang, dan insentif ekonomi. Penelitian ini menangani masalah rendahnya kesadaran masyarakat terhadap praktik pengelolaan sampah yang tepat, yang menghambat partisipasi efektif dalam program daurulang. Sistem hibrida ini mencapai akurasi respons sebesar 85% dalam p engujian pengguna, divalidasi melalui analisis matriks konfusi yang mendetail. Temuan utama menunjukkan peningkatan signifikan dalam keterlibatan pengguna, retensi pengetahuan, dan kesadaran masyarakat, menunjukkan potensi chatbot sebagai solusi pendidikan lingkungan yang berbasis teknologi dan dapat diskalakan untuk konteks serupa di seluruh Indonesia