Claim Missing Document
Check
Articles

Found 6 Documents
Search

Utilization of Iron Ore Slag in The Manufacture of Calcium Silicate Boards Hendronursito, Yusup; Amin, Muhammad; Al Muttaqii, Muhammad; Karo Karo, Pulung; Yulia, Andini; Candra Birawidha, David; Isnugroho, Kusno
Jurnal Riset Teknologi Pencegahan Pencemaran Industri Vol. 12 No. 2 (2021)
Publisher : Balai Besar Standardisasi dan Pelayanan Jasa Pencegahan Pencemaran Industri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21771/jrtppi.2021.v12.no2.p25-33

Abstract

This study aims to determine the iron ore slag effect as an additive in particleboard based on the SNI 7705:2011 standard. Iron ore slag comes from the waste processing of iron ore into sponge iron. The iron ore slag is reduced to a size of 200 mesh. Particleboard made with the composition of slag and silica is 0:40, 8:32, 16:24, 20:20, 24:16, 32:8, and 40:0 wt%. Meanwhile, other materials were made permanent, namely PCC cement and lime 16 wt%, coconut fiber 3wt%, and water 3 wt%. They are pressed with 3 tons of pressure for 1 hour using a hydraulic press. Drying at room temperature for one day, under the hot sun for two days, then in an oven at 110 oC for 8 hrs. Analysis of the chemical composition of X-ray fluorescence and X-ray diffraction crystalline phase, SEM-EDS micro-photographs, physical tests including density and porosity, and mechanical compressive strength tests. The dominant composition of SiO2 and CaO affects the formation of silicon dioxide (SiO2), calcium silicate (CaSiO3), and dicalcium silicate (Ca2SiO4) phases. Silica has a positive effect on the compressive strength of particleboard but is different from Ca, which has an impact on reducing the compressive strength. The sem morphology shows that coconut fiber cannot withstand heating at 190 oC and results in agglomeration. The addition of 20% ore slag and silica has met the calcium silicate board SNI 7705-2011. These results can be used to develop slag waste from iron ore processing into much more useful objects.
Analysis of Fine Glass Waste Addition as a Filler Material for Sand Substitution on the Properties of Mortar Products Suharto, Suharto; Amin, Muhammad; Al Muttaqii, Muhammad; Marjunus, Roniyus; Fitri, Nuzullia; Suhartono, Suhartono
TEKNIK Vol 42, No. 3 (2021): December 2021
Publisher : Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/teknik.v42i3.32686

Abstract

Inorganic glass waste can replace sand in mortar production due to its SiO2 content being greater than 70%. This study aims to analyze the increase in mortal product agility due to the substitution of sand and reducing environmental pollution. The fine glass waste used is restrained on 80 and 120 mesh sieves. The fine glass waste substitution variations are 0, 10, 20, 30, 40, and 50% of the sand weight. The results show that fine glass waste could be used as a material for sand substitution because of the content of SiO2 of 73.8%. The results from XRD indicate that the phase of fine waste glass is amorphous. The mortar was printed with a 5x5x5 cm cube mold, and it was soaked for 7, 14, and 21 days. Based on the results, the compressive strength with a high value of 13.58 MPa at 20% fine glass waste substitution and 120 mesh. The density of 2.8±0.8 g/cm3, porosity 4.40±0.001%, and absorption 2.83±0,0009%. The compressive strengths, density, porosity, absorption, XRF and XRD characterization were evaluated. The results showed that the SiO2 compound in waste glass with the right composition of 20% could significantly increase the compressive strength. Phase formation of Calcite (CaCO3), Quartz (SiO2), and Portlandite (Ca(OH)2) was formed from the results of XRF characterization
Conversion of Sunan Candlenut Oil to Aromatic Hydrocarbons with Hydrocracking Process Over Nano-HZSM-5 Catalyst Al Muttaqii, Muhammad; Marbun, Maja Pranata; Sudibyo, Sudibyo; Aunillah, Asif; Pranowo, Dibyo; Hasanudin, Hasanudin; Rinaldi, Nino; Bardant, Teuku Beuna
Bulletin of Chemical Reaction Engineering & Catalysis 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20116

Abstract

In this paper, the catalysts (Nano-HZSM-5 and Fe-La/nano HZSM-5) were prepared with incipient wetness impregnation and applied for hydrocracking of Sunan candlenut oil. The hydrocracking process was conducted in a batch reactor with a pressure of 20-30 bar H2 gas for 2 h under various temperatures. The results demonstrated that hydrocracking of Sunan candlenut oil using nano HZSM-5 and Fe-La/NHZ catalysts could be converted into aromatic hydrocarbons, and the reaction temperature affected hydrocarbon production. The aromatic compounds, such as propyl-benzene, 1-ethyl-3-methylbenzene, heptyl-benzene, 2-ethyl-naphthalene, etc., reached 35.51% over the Fe-La/NHZ_2 catalyst. In all cases, the zeolite-based catalysts are the most suitable to produce aromatic hydrocarbons. Metal impregnated (Fe and La) on nano HZSM-5 catalyst could improve the aromatics compounds due to increased metal and acid sites. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Lampung Natural Zeolite Dopped with of ZnO-TiO2 Metal Oxide as Catalyst for Biodiesel Production Al Muttaqii, Muhammad; Marbun, Maja Pranata; Priyanto, Sugeng; Sibuea, Andreas; Simanjuntak, Wasinton; Syafaat AM, Fuad; Silalahi Raja, Havier Samuel Huttur; Alviany, Riza; Maryani, Tri; Sulistyaningsih, Triastuti; Prasetyo, Erik; Sudibyo, Sudibyo; Yati, Indri
Bulletin of Chemical Reaction Engineering & Catalysis 2024: BCREC Volume 19 Issue 1 Year 2024 (April 2024)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20038

Abstract

Research has been carried out on making biodiesel from palm oil using natural zeolite catalysts impregnated with metal oxides such as zinc oxide and titanium oxide. This research aims to produce biodiesel using natural zeolite and ZnO-TiO2/NZ catalysts. The catalysts were analyzed using X-Ray Diffraction (XRD), X-Ray Fluorescence (XRF), Scanning Electron Microscope (SEM), and Brunauer-Emmet-Teller (BET). The catalyst was tested in the transesterification reaction to produce biodiesel. The mole oil and methanol ratio varied from 1:15, 1:18, and 1:20. In addition, the biodiesel product was analyzed using Gas Chromatography-Mass Spectroscopy (GC-MS). The results showed the optimum condition for converting triglycerides to 1:18 variation of oil:methanol was 60.53%using a ZnO-TiO2/NZ catalyst. The ZnO-TiO2/NZ catalyst is very promising for use as a catalyst for converting palm oils into biodiesel.
Conversion of Isopropanol to Diisopropyl Ether over Cobalt Phosphate Modified Natural Zeolite Catalyst Hasanudin, Hasanudin; Asri, Wan Ryan; Rahmawati, Rahmawati; Riyanti, Fahma; Maryana, Roni; Al Muttaqii, Muhammad; Rinaldi, Nino; Hadiah, Fitri; Novia, Novia
Bulletin of Chemical Reaction Engineering & Catalysis 2024: BCREC Volume 19 Issue 2 Year 2024 (August 2024)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20144

Abstract

This study aims to produce diisopropyl ether (DIPE) via isopropanol dehydration using cobalt-phosphate-supported natural zeolite catalysts. The catalytic activities of the zeolite/CoO and zeolite/Co(H2PO4)2 were compared. The as-prepared catalysts were assessed using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX), Fourier transform infrared (FTIR) spectroscopy, and N2 adsorption-desorption. Surface acidity was determined using the gravimetric method with pyridine as the probe. The results of this study showed that natural zeolite was favorably impregnated by CoO and Co(H2PO4)2 species. The impregnation process affected the textural and acidic features of the catalysts. The zeolite/Co(H2PO4)2 catalyst with a loading of 8 mEq.g-1 exhibited the highest surface acidity of 1.827 mmol.g-1. This catalyst also promoted the highest catalytic activity towards isopropanol dehydration, with an isopropanol conversion of 66.19%, DIPE selectivity, and yield of 46.72% and 34.99%, respectively. The cobalt phosphate species promoted higher catalytic activity for isopropanol dehydration than the CoO species. This study demonstrated the potential of cobalt phosphate-supported natural zeolite catalysts for DIPE production with adequate performance. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Effect of Aluminium Loading on SiO2/Al2O3-NiMo Catalysts Synthesized via KHP-template for Crude Palm Oil Hydrocracking Hasanudin, Hasanudin; Nakashima, Mhika; Asri, Wan Ryan; Novia, Novia; Hadiah, Fitri; Maryana, Roni; Al Muttaqii, Muhammad; Rinaldi, Nino
Bulletin of Chemical Reaction Engineering & Catalysis 2025: BCREC Volume 20 Issue 4 Year 2025 (December 2025) (In Progress Issue)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.20483

Abstract

The present study evaluates the catalytic activity of SiO2/Al2O3‒x and SiO2/Al2O3‒x‒NiMo (where x = 5, 10, 25 g of aluminium weight) synthesized using a potassium hydrogen phthalate (KHP) template-assisted route for the hydrocracking of crude palm oil (CPO) into biofuels. Increasing Al weight modified acidity, porosity, and NiMo dispersion, leading to distinct catalytic behavior. The optimal SiO2/Al2O3‒x‒NiMo catalyst (10 g Al) achieved ~94% conversion, dominated by jet fuel-range hydrocarbons (C10-C14) through synergistic hydrodeoxygenation and acid-catalyzed cracking-isomerization pathway. The enhanced performance originates from the balance between acidity and metal dispersion, highlighting that both template selection and Al loading govern the design of efficient SiO2/Al2O3‒NiMo catalysts for biofuel production. Copyright © 2025 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).