Claim Missing Document
Check
Articles

Found 24 Documents
Search

Deteksi Parasit Plasmodium pada Citra Mikroskopis Hapusan Darah dengan Metode Deep Learning PRATIWI, NOR KUMALASARI CAECAR; IBRAHIM, NUR; FU’ADAH, YUNENDAH NUR; RIZAL, SYAMSUL
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 9, No 2: Published April 2021
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v9i2.306

Abstract

ABSTRAKParasit plasmodium merupakan makhluk protozoa bersel satu yang menjadi penyebab penyakit malaria. Plasmodium ini dibawa melalui gigitan nyamuk anopheles betina. Dalam World Malaria Report 2015 menyatakan bahwa malaria telah menyerang sedikit 106 negara di dunia. Di Indonesia sendiri, Papua, NTT dan Maluku merupakan wilayah dengan kasus positif malaria tertinggi. Malaria telah menjadi masalah yang serius, sehingga keberadaan sistem diagnosa otomatis yang cepat dan handal sangat diperlukan untuk proses perlambatan penyeberan dan pembasmian epidemi. Dalam penelitian ini akan dirancang sistem yang mampu mendeteksi parasit malaria pada citra mikroskopis darah menggunakan arsitekur Convolutional Neural Network (CNN) sederhana. Hasil pengujian menunjukkan bahwa metode yang diusulkan memberikan presisi dan recall sebesar 0,98 dan f1-score sebesar 0,96 serta akurasi 95,83%.Kata kunci: parasit, malaria, convolutional neural network, citra mikroskopis ABSTRACTPlasmodium parasites are single-celled protozoan creatures that cause malaria. Plasmodium is carried through the bite of a female Anopheles mosquito. The World Malaria Report 2015 states that malaria has attacked at least 106 countries in the world. In Indonesia itself, Papua, NTT and Maluku are the regions with the highest positive cases of malaria. Malaria has become a serious problem, so the existence of a fast and reliable automatic diagnosis system is indispensable for the process of slowing down the spread and eliminating the epidemic. In this study, a system capable of detecting malaria parasites in microscopic images of blood will be designed using a simple Convolutional Neural Network (CNN) architecture. The test results show that the proposed method provides precision and recall of 0,98, f1-values of 0.96 and accuracy of 95,83%.Keywords: parasites, malaria, convolutional neural network, microscopic image
Klasifikasi Jenis Beras Berbasis Citra Dengan Menggunakan Deep Learning Marnelius, Chelsya Dwi; Usman, Koredianto; Pratiwi, Nor Kumalasari Caecar
eProceedings of Engineering Vol. 10 No. 5 (2023): Oktober 2023
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Beras merupakan salah satu bahan pangan serealiayang paling banyak dikonsumsi oleh masyarakat Asia,termasuk di Indonesia. Setiap beras memiliki kemiripanbentuk bulir dan warna yang relatif hampir sama, sehinggaproses mengidentifikasi jenis beras secara visual dinilai masihcukup sulit, dan untuk mengurangi kemungkinan terjadinyahuman error. Oleh karena itu, pengolahan citra digital dapatdigunakan dalam melakukan klasifikasi jenis berasmenggunakan metode Convolutional Neural Network (CNN)dengan arsitektur Residual Network (ResNet-50).Dataset yang digunakan dalam penelitian ini berjumlah 2500citra yang diperoleh dari website Kaggle, berupa citra bulirberas putih yang terdiri dari 5 kelas yaitu Arborio, Basmati,Ipsala, Jasmine, dan Karacadag. Tahapan diawali denganmelakukan preprocessing yaitu resize ukuran citra dannormalisasi citra, lalu dilakukan pembagian dataset sebagaidata latih dan data uji. kemudian selanjutnya dilakukanekstraksi ciri dan klasifikasi menggunakan kombinasihyperparameter input size, optimizer, learning rate, danbatch size untuk mendapatkan hasil model terbaik.Kemudian di tahap akhir hasil akan dianalisis denganparameter akurasi dan loss.Melalui penelitian ini diperoleh hasil akhir pengujian terbaikpada penggunaan parameter input size 64×64 piksel,optimizer Adam, learning rate 0,001, dan batch size 64,dengan hasil validation accuracy sebesar 98,20% dan loss0,1109.Kata Kunci: jenis beras, CNN, ResNet-50.
Pemanfaatan Convolutional Neural Network (Cnn) Untuk Klasifikasi Jenis Beras Berbasis Citra Pellokila, Victor Aji Admaja; Usman, Koredianto; Pratiwi, Nor Kumalasari Caecar
eProceedings of Engineering Vol. 10 No. 5 (2023): Oktober 2023
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Beras merupakan makanan pokok untuk orangAsia, terutama di Indonesia. Untuk melakukan pengolahan padimenjadi beras, ada dua hal yang harus dilakukan yaitu dengancara tradisional seperti ditumbuk dan ada juga seperti caramodern seperti penggilingan menggunakan mesin. Seperti yangdiketahui, banyak jenis beras yang telah beredar di pasaran.Dengan adanya beragam jenis beras yang beredar, tentu jugaada hal yang tidak bisa dilakukan oleh manusia dalammengklasifikasi jenis beras dengan mengandalkan inderapenghilatan saja. Maka dari itu, pengolahan citra digital dapatberperan penting agar dapat memudahkan manusia untukmengklasifikasi jenis beras. Tujuan penelitian ini, untukmengklasifikasikan jenis beras dengan menggunakan metodeConvolutional Neural Network (CNN) arsitektur AlexNetberbasis pengolahan citra. Adapun dataset yang digunakanpada penelitian berjumlah 2500 citra yang bersumber dariKaggle, dimana ada lima jenis beras yang akan diklasifikasikanyaitu beras arborio, beras basmati, beras ipsala, beras jasminedan beras karacadag. Pada penelitian ini parameter yang akandianalisis adalah akurasi, loss, presisi, recall, dan F1-Score. Ditiap pengujian, akan dilakukan empat skenario pengujianterhadap hyperparameter berupa input size, optimizer,learning rate, batch size. Dari pengujian yang telah dilakukandidapatkan hasil terbaik dengan citra asli menggunakan inputsize 128×128, optimizer SGD, learning rate 0.0001, dan batchsize 32. Berdasarkan dari hasil pengujian tersebut, test accuracyyang didapatkan sebesar 98.40% dengan testing loss 0.0659Kata kunci— Jenis Beras, CNN, Deep Learning, AlexNet.
In-Depth Exploration and Comparison of Machine Learning Performances for Early-Stage Diabetes Risk Prediction Pratiwi, Nor Kumalasari Caecar
JURNAL INFOTEL Vol 16 No 2 (2024): May 2024
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v16i2.1117

Abstract

Abstract — Diabetes mellitus is distinguished by an inability of the human system to produce insulin on an ongoing basis, as well as by the inefficient utilization of the insulin hormone, resulting in an elevated level of blood glucose. Global diabetes rates have nearly doubled since 1980, reaching 9.3% among adults. Alarmingly, of the 463 million individuals with diabetes, 50.1% are unaware of their condition. Indonesia ranks seventh globally with 10.7 million diabetes cases. In 2019, it was fifth globally for adults (20–79 years) with undiagnosed diabetes. This silent epidemic demands urgent attention and comprehensive strategies for early detection and management. In recent years, researchers have increasingly studied machine learning for early diabetes recognition. In this study, we aim to predict early-stage diabetes risk by utilizing 16 health condition features. We explore 12 distinct machine learning algorithms, applying a hyperparameter grid to tune each algorithm. This involves systematically testing combinations of hyperparameters to identify the optimal settings for achieving the most accurate and reliable predictive models. The results indicate that the Light GBM algorithm achieved the highest accuracy of 0.9692. By contrast, the logistic regression and Naive Bayes algorithms demonstrated the lowest performance, each with an accuracy of 0.8923. The implications of these results underline the capability of employing machine learning algorithms to precisely and effectively detect individuals susceptible to diabetes, enabling the implementation of individualized healthcare approaches.