Claim Missing Document
Check
Articles

Found 24 Documents
Search

Klasifikasi Kanker Kulit menggunakan Metode Convolutional Neural Network dengan Arsitektur VGG-16 AGUSTINA, REGITA; MAGDALENA, RITA; PRATIWI, NOR KUMALASARI CAECAR
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 10, No 2: Published April 2022
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v10i2.446

Abstract

ABSTRAKKanker kulit merupakan penyakit yang ditimbulkan oleh perubahan karakteristik sel penyusun kulit dari normal menjadi ganas, yang menyebabkan sel tersebut membelah secara tidak terkendali dan merusak DNA. Deteksi dini dan diagnosis yang akurat diperlukan untuk membantu masyarakat mengindentifikasi apakah kanker kulit atau hanya kelainan kulit biasa. Pada studi ini, dirancang sebuah sistem yang dapat mengklasifikasi kanker kulit dengan memanfaatkan citra kulit pasien yang kemudian diolah menggunakan metode Convolutional Neural Network (CNN) arsitektur VGG-16. Dataset yang digunakan berupa citra jaringan kanker sebanyak 4000 gambar. Proses diawali dengan input citra, pre-processing, pelatihan model dan pengujian sistem. Hasil terbaik diperoleh pada pengujian tanpa pre-processing CLAHE dan Gaussian filter, dengan menggunakan hyperparameter optimizer SGD, learning rate 0,001, epoch 50 dan batch size 32. Akurasi yang diperoleh sebesar 99,70%, loss 0,0055, presisi 0,9975, recall 0,9975 dan f1-score 0,9950.Kata kunci: Kanker kulit, CNN, VGG-16 ABSTRACTSkin cancer is a disease caused by changes in the characteristics of skin cells from normal to malignant, which causes the cells to divide uncontrollably and damage DNA. Early detection and accurate diagnosis are necessary to help the public identify whether skin cancer or just a common skin disorder. In this study, a system was designed that can classify skin cancer by utilizing images of patients' skin which is then processed using the Convolutional Neural Network (CNN) method of VGG-16 architecture. Dataset used in the form of cancer tissue imagery as many as 4000 images. The process begins with image input, pre-processing, model training and system testing. The best results were obtained on testing without pre-processing CLAHE and Gaussian filters, using hyperparameters, SGD optimizer, learning rate 0.001, epoch 50 and batch size 32. Accuracy obtained by 99.70%, loss 0.0055, precision 0.9975, recall 0.9975 and f1-score 0.9950.Keywords: Skin cancer, CNN, VGG-16
Evaluasi Optimizer pada Residual Network untuk Klasifikasi Klon Teh Seri GMB Berbasis Citra Daun USMAN, KOREDIANTO; PRATIWI, NOR KUMALASARI CAECAR; IBRAHIM, NUR; SYAHRIAN, HERI; RAHADI, VITRIA PUSPITASARI
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 9, No 4: Published October 2021
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v9i4.841

Abstract

ABSTRAKKomoditas teh berperan strategis terhadap pertumbuhan perekonomian Indonesia, salah satunya dari teh klon Gambung (GMB). Klon GMB memiliki beberapa karakter khas, dengan tingkat kemiripan morfologi yang sangat tinggi. Hal ini berdampak pada proses pengenalan klon GMB dilakukan melalui pengamatan visual oleh tenaga ahli sangat rentan terhadap kesalahan identifikasi. Sehingga, dalam penelitian ini dirancang suatu sistem identifikasi terhadap 11 klon teh seri GMB (GMB-1 hingga GMB-11) dengan menggunakan arsitektur ResNet101. Evaluasi sistem akan dilakukan dengan membandingkan tujuh algoritma optimizer yang berbeda, yaitu; Adam, SGD, RMSProp, AdaGrad, AdaMax, AdaDelta dan Nadam. Hasil pengujian menunjukkan bahwa Adam dan SGD memberikan nilai rata-rata presisi, recall dan F1-score terbaik. Selain itu, Adam memberikan nilai akurasi yang cenderung stabil sejak iterasi pertama. Metode yang diusulkan memberikan tingkat presisi, recall, F1-score sebesar 96% dan akurasi terbaik sebesar 97%.Kata kunci: klasifikasi daun teh, seri Gambung (GMB), CNN, ResNet101 ABSTRACTGambung (GMB) tea is one of the tea commodities that plays a key role in Indonesia's economic development. GMB clones have a number of distinguishing characteristics, including a high degree of morphological similarities. This has an impact on the process of identifying GMB clones through visual observation by experts who are subject to mistakes. In this study, ResNet101 architecture was used to create an identification scheme for 11 tea clones from the GMB series (GMB-1 to GMB-11). System evaluation will be carried out by comparing seven different optimizer; Adam, SGD, RMSProp, AdaGrad, AdaMax, AdaDelta, and Nadam. The test results indicate that Adam and SGD have the highest average accuracy, recall, and f1-score values. Adam also has an accuracy value that has remained consistent since the first iteration. The proposed method provides highest precision, recall, F1-score of 96% and accuracy of 97%.Keywords: tea leaves classification, GMB series, CNN, ResNet101
Deteksi Parasit Plasmodium pada Citra Mikroskopis Hapusan Darah dengan Metode Deep Learning PRATIWI, NOR KUMALASARI CAECAR; IBRAHIM, NUR; FU’ADAH, YUNENDAH NUR; RIZAL, SYAMSUL
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 9, No 2: Published April 2021
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v9i2.306

Abstract

ABSTRAKParasit plasmodium merupakan makhluk protozoa bersel satu yang menjadi penyebab penyakit malaria. Plasmodium ini dibawa melalui gigitan nyamuk anopheles betina. Dalam World Malaria Report 2015 menyatakan bahwa malaria telah menyerang sedikit 106 negara di dunia. Di Indonesia sendiri, Papua, NTT dan Maluku merupakan wilayah dengan kasus positif malaria tertinggi. Malaria telah menjadi masalah yang serius, sehingga keberadaan sistem diagnosa otomatis yang cepat dan handal sangat diperlukan untuk proses perlambatan penyeberan dan pembasmian epidemi. Dalam penelitian ini akan dirancang sistem yang mampu mendeteksi parasit malaria pada citra mikroskopis darah menggunakan arsitekur Convolutional Neural Network (CNN) sederhana. Hasil pengujian menunjukkan bahwa metode yang diusulkan memberikan presisi dan recall sebesar 0,98 dan f1-score sebesar 0,96 serta akurasi 95,83%.Kata kunci: parasit, malaria, convolutional neural network, citra mikroskopis ABSTRACTPlasmodium parasites are single-celled protozoan creatures that cause malaria. Plasmodium is carried through the bite of a female Anopheles mosquito. The World Malaria Report 2015 states that malaria has attacked at least 106 countries in the world. In Indonesia itself, Papua, NTT and Maluku are the regions with the highest positive cases of malaria. Malaria has become a serious problem, so the existence of a fast and reliable automatic diagnosis system is indispensable for the process of slowing down the spread and eliminating the epidemic. In this study, a system capable of detecting malaria parasites in microscopic images of blood will be designed using a simple Convolutional Neural Network (CNN) architecture. The test results show that the proposed method provides precision and recall of 0,98, f1-values of 0.96 and accuracy of 95,83%.Keywords: parasites, malaria, convolutional neural network, microscopic image
In-Depth Exploration and Comparison of Machine Learning Performances for Early-Stage Diabetes Risk Prediction Nor Kumalasari Caecar Pratiwi
JURNAL INFOTEL Vol 16 No 2 (2024): May 2024
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v16i2.1117

Abstract

Abstract — Diabetes mellitus is distinguished by an inability of the human system to produce insulin on an ongoing basis, as well as by the inefficient utilization of the insulin hormone, resulting in an elevated level of blood glucose. Global diabetes rates have nearly doubled since 1980, reaching 9.3% among adults. Alarmingly, of the 463 million individuals with diabetes, 50.1% are unaware of their condition. Indonesia ranks seventh globally with 10.7 million diabetes cases. In 2019, it was fifth globally for adults (20–79 years) with undiagnosed diabetes. This silent epidemic demands urgent attention and comprehensive strategies for early detection and management. In recent years, researchers have increasingly studied machine learning for early diabetes recognition. In this study, we aim to predict early-stage diabetes risk by utilizing 16 health condition features. We explore 12 distinct machine learning algorithms, applying a hyperparameter grid to tune each algorithm. This involves systematically testing combinations of hyperparameters to identify the optimal settings for achieving the most accurate and reliable predictive models. The results indicate that the Light GBM algorithm achieved the highest accuracy of 0.9692. By contrast, the logistic regression and Naive Bayes algorithms demonstrated the lowest performance, each with an accuracy of 0.8923. The implications of these results underline the capability of employing machine learning algorithms to precisely and effectively detect individuals susceptible to diabetes, enabling the implementation of individualized healthcare approaches.