Claim Missing Document
Check
Articles

Found 13 Documents
Search

Peran Mahasiswa KKN Sebagai Tenaga Pengajar Di Taman Pendidikan Al Quran (TPA) Desa Purwosari Nurlela, Nurlela; Mujiono, Slamet; Lestari, Widia; Jamilah, Zahratul; Fatma, Yulia; Ananda, Putri; Wati, Rosita
Jurnal Kegiatan Pengabdian Mahasiswa (JKPM) Vol 1 No 2 (2023): Jurnal Kegiatan Pengabdian Mahasiswa (JKPM)
Publisher : Sekolah Tinggi Ekonomi dan Bisnis Syariah (STEBIS) Indo Global Mandiri

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36908/jkpm.v1i2.281

Abstract

Desa purwosari adalah salah satu desa di Kecamatan Sembawa Kabupaten Banyuasin provinsi Sumatra Selatan, merupakan salah satu desa hasil pemekaran dari desa Mainan dengan 3 dusun dan 13 RT. Desa Purwosari dibawah kepemimpinan kepala Desa,Puji Widodo. Desa Purwosari ini terbentuk pada tahun 2001. Di Desa Purwosari mayoritas orang jawa dan beragama Islam. Pada saat kecil kita telah mulai mengenal iqro dan Al-Quran. TPA merupakan tempat kita menimba ilmu mengenai dasar dalam membaca iqro dan Al-Quran. Di Desa Purwosari,mayoritas yang belajar di TPA adalah anak-anak. salah satu permasalahan yang didapatkan yaitu jenuhnya dalam belajar baca al-quran atau Iqro. Maka dari itu Mahasiswa KKN membantu untuk menghilangkan rasa jenuh tersebut atau menumbuhkan rasa semangat untuk belajar membaca Al-Quran atau Iqro dengan cara membuat belajar lebih seru dengan metode belajar sambil bermain. Terlihat perbedaannya sebelum mengubah metode pembelajaran yang awalnya anak anak ingin cepat pulang karena pembelajaran yang membosankan dan setelah menerapkan metode belajar bermain anak anak senang untuk terus belajar..
Islam and Medicine: A Study on The Fatwa of Indonesian Ulama Council on Vaccines Muslimin, JM.; Iskandar, Rizky Fauzi; Fatma, Yulia
AL-ISTINBATH : Jurnal Hukum Islam Vol 6 No 1 May (2021)
Publisher : Institut Agama Islam Negeri Curup

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (448.918 KB) | DOI: 10.29240/jhi.v6i1.2496

Abstract

The principles of Islamic jurisprudence can provide a convenient solution for practitioners of Islamic law in formulating the law of this rapidly expanding vaccine field for now and the future. This study aims to obtain the rationale of fiqhiyyah principles used by Indonesia Ulama Council (Majelis Ulama Indonesia, MUI) related to contemporary medical and health sciences, especially vaccines.. This research is a qualitative library research with primary source the fatwa of  Indonesian Ulama Council.. The data and document are reviewed through content analysis techniques using descriptive-analytical and interpretative methods. The approach in this study uses the Principles of Islamic Jurisprudence (usul al-fiqh) and Islamic legal maxims (qawa'id fiqhiyyah) approach. . The conclusion of the study is the permissibility and prohibition of using vaccines are based on the ingredient of the vaccines. If the ingredient is extracted from allowed materials (halal), the vaccines are accepted. On the contrary, if it is contaminated by illegal materials, the vaccines are rejected. However, in the urgent situations, all vaccines can be accepted based on the logics of emergency and need.
Klasifikasi Algoritma Kriptografi pada Pesan Terenkripsi menggunakan Support Vector Machine (SVM) Fatma, Yulia; Gunawan, Rahmad; Nurkhairi Fitri; Firdaus, Rahmad; Hayami, Regiolina; Soni, Soni
JURNAL FASILKOM Vol. 15 No. 3 (2025): Jurnal FASILKOM (teknologi inFormASi dan ILmu KOMputer)
Publisher : Unversitas Muhammadiyah Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37859/jf.v15i3.10843

Abstract

Data protection has become a highly critical aspect, particularly in addressing ransomware threats that illegally encrypt data. This study is important to evaluate the capability of machine learning techniques in identifying encryption algorithms used in encrypted data, especially in ransomware attacks. This work represents an initial step that can assist cybersecurity practitioners in more rapidly understanding attack patterns, determining appropriate response strategies, and enhancing proactive mitigation and response efforts to protect data against increasingly complex cyber threats. The machine learning algorithm employed in this study is the Support Vector Machine (SVM). The dataset consists of ciphertext generated using the AES, DES, and Vigenère Cipher cryptographic algorithms. The feature extraction process utilizes ten statistical features to capture the distinctive patterns of each type of ciphertext. The SVM model is developed using a data split of 90% for training and 10% for testing. Performance evaluation is conducted using a confusion matrix with accuracy, precision, recall, and F1-score metrics. The result demonstrate an average accuracy 0f 92,33%, with the vigenere cipher being perfectly classified (100% accuracy). Howefer, slight misclassifications occured beetween AES and DES duet o their similiar entropy chraracteristic. Experimental results demonstrate that the SVM model is capable of identifying encryption algorithms with high accuracy and balanced classification performance across the three algorithm classes. These findings highlight the potential of machine learning approaches for detecting encryption algorithms in cyber-attacks, thereby making a meaningful contribution to the improvement of proactive data security mitigation and response strategies.