p-Index From 2020 - 2025
6.889
P-Index
This Author published in this journals
All Journal Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) CommIT (Communication & Information Technology) Journal of ICT Research and Applications International Journal of Advances in Intelligent Informatics Scientific Journal of Informatics Journal of Information Systems Engineering and Business Intelligence Indonesian Journal on Computing (Indo-JC) IJoICT (International Journal on Information and Communication Technology) JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Journal of Information Technology and Computer Science (JOINTECS) JURNAL MEDIA INFORMATIKA BUDIDARMA Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control JURIKOM (Jurnal Riset Komputer) Building of Informatics, Technology and Science Journal of Information Systems and Informatics RADIAL: JuRnal PerADaban SaIns RekAyasan dan TeknoLogi Indonesian Journal of Electrical Engineering and Computer Science Journal of Computer System and Informatics (JoSYC) Madani : Indonesian Journal of Civil Society Teknika Journal of Applied Data Sciences KLIK: Kajian Ilmiah Informatika dan Komputer Journal of Dinda : Data Science, Information Technology, and Data Analytics Jurnal Ilmiah IT CIDA : Diseminasi Teknologi Informasi SisInfo : Jurnal Sistem Informasi dan Informatika Jurnal INFOTEL RADIAL: Jurnal Peradaban Sains, Rekayasa dan Teknologi
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control

Context-Aware Smart Door Lock with Activity Recognition Using Hierarchical Hidden Markov Model Aji Gautama Putrada; Nur Ghaniaviyanto Ramadhan; Maman Abdurohman
Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control Vol. 5, No. 1, February 2020
Publisher : Universitas Muhammadiyah Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (806.27 KB) | DOI: 10.22219/kinetik.v5i1.904

Abstract

Context-Aware Security demands a security system such as a Smart Door Lock to be flexible in determining security levels. The context can be in various forms; a person’s activity in the house is one of them and is proposed in this research. Several learning methods, such as Naïve Bayes, have been used previously to provide context-aware security systems, using related attributes. However conventional learning methods cannot be implemented directly to a Context-Aware system if the attribute of the learning process is low level. In the proposed system, attributes are in forms of movement data obtained from a PIR Sensor Network. Movement data is considered low level because it is not related directly to the desired context, which is activity. To solve the problem, the research proposes a hierarchical learning method, namely Hierarchical Hidden Markov Model (HHMM). HHMM will first transform the movement data into activity data through the first hierarchy, hence obtaining high level attributes through Activity Recognition. The second hierarchy will determine the security level through the activity pattern. To prove the success rate of the proposed method a comparison is made between HHMM, Naïve Bayes, and HMM. Through experiments created in a limited area with real sensed activity, the results show that HHMM provides a higher F1-Measure than Naïve Bayes and HMM in determining the desired context in the proposed system. Besides that, the accuracies obtained respectively are 88% compared to 75% and 82%.