p-Index From 2021 - 2026
7.007
P-Index
This Author published in this journals
All Journal Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) CommIT (Communication & Information Technology) Journal of ICT Research and Applications International Journal of Advances in Intelligent Informatics Scientific Journal of Informatics Journal of Information Systems Engineering and Business Intelligence Indonesian Journal on Computing (Indo-JC) IJoICT (International Journal on Information and Communication Technology) JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Journal of Information Technology and Computer Science (JOINTECS) JURNAL MEDIA INFORMATIKA BUDIDARMA Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control JURIKOM (Jurnal Riset Komputer) Building of Informatics, Technology and Science Journal of Information Systems and Informatics RADIAL: JuRnal PerADaban SaIns RekAyasan dan TeknoLogi Indonesian Journal of Electrical Engineering and Computer Science Journal of Computer System and Informatics (JoSYC) Madani : Indonesian Journal of Civil Society Teknika Journal of Applied Data Sciences KLIK: Kajian Ilmiah Informatika dan Komputer Journal of Dinda : Data Science, Information Technology, and Data Analytics Jurnal Ilmiah IT CIDA : Diseminasi Teknologi Informasi SisInfo : Jurnal Sistem Informasi dan Informatika Jurnal INFOTEL RADIAL: Jurnal Peradaban Sains, Rekayasa dan Teknologi
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Building of Informatics, Technology and Science

Expert System to Diagnose Diseases in Durian Plants using Naïve Bayes Nugraha, Narantyo Maulana Adhi; Rahardian, Reva; Kridabayu, Adam Nur; Adhinata, Faisal Dharma; Ramadhan, Nur Ghaniaviyanto
Building of Informatics, Technology and Science (BITS) Vol 3 No 3 (2021): December 2021
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (599.891 KB) | DOI: 10.47065/bits.v3i3.1077

Abstract

Durian is a fruit that is very popular and very easy to find throughout Indonesia. Durian fruit is a thorny fruit with a very pungent smell with a distinctive taste, and for some durian fans, the distinctive taste of durian is what makes durian unique compared to other fruits. However, it is unfortunate that the production and quality of durian fruit in Indonesia is currently still low due to the limited knowledge of farmers in caring for and maintaining durian plants from pests and diseases on durian plants. So far, in detecting pests and diseases, farmers still carry out pest and disease detection manually, and of course, this is very dependent on pest and disease observers/experts. For this reason, so that later the level of production and quality of durian in Indonesia can increase, we create an expert system to diagnose a disease in durian plants to help farmers overcome problems around pests and diseases commonly occur in durian plants. This study uses the Naïve Bayes method as a determinant of durian disease. The experimental results yield an accuracy of 82%, which indicates the proposed method is quite good in diagnosing durian disease.
Pendekatan Algoritma Tree dalam Prediksi Populasi pada Smart Poultry Wahyu Nugroho, Nicolaus Euclides; Ramadhan, Nur Ghaniaviyanto; Wibowo, Merlinda; Pramono, Sigit
Building of Informatics, Technology and Science (BITS) Vol 4 No 3 (2022): December 2022
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v4i3.2609

Abstract

Intelligent systems for monitoring poultry in kennels are experiencing an increasing trend in several studies. Monitoring poultry is very important in the cage so that you can find out the chickens' condition and environment in the cage. Conditions that can be monitored include the weight of the chickens, whether or not there is enough water in a day, CO2 levels in the cages, air temperature, and humidity in the cages. Several studies have been conducted studies on monitoring poultry cages using IoT-based sensors. However, people have yet to predict the poultry population for tomorrow. So this study aims to predict the number of poultry populations in kennels based on related parameters. The prediction method used in this research is a decision tree and Support Vector Machine (SVM) to see which prediction method is better. The results evaluation techniques used in this study are Mean Square Error (MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and R2. The experimental results show that using the decision tree method, and the results are MSE 61987.202, RMSE 248.972, MAE 85.086, and R2 0.969. Overall the results of the decision tree method are superior to SVM.
Implementation of Neural Machine Translation for English-Sundanese Language using Long Short Term Memory (LSTM) Ramadhan, Teguh Ikhlas; Ramadhan, Nur Ghaniaviyanto; Supriatman, Agus
Building of Informatics, Technology and Science (BITS) Vol 4 No 3 (2022): December 2022
Publisher : Forum Kerjasama Pendidikan Tinggi

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bits.v4i3.2614

Abstract

In this modern era, machine translation has been used all over the world for solving humankind’s problems such as it deals with language. Machine translation is almost used by people who want to translate their native language into their foreign language. The international language being used is the English language. Machine translation is the task to translate a source language to another language. The input of it is a word or a sentence from the source language and it will be translated into another language. The input of it is a word or a sentence from the source language and it will be translated into another language. There are many purposes for using machine translation such as learning another language, communicating, finding a certain or better word to use, and even writing something in a book or another article. Several methods have been conducted to do the machine translation task such as the statistical approach and the neural approach In terms of Sundanese machine translation, there are several methods or several approaches that other researchers have conducted. However the study about Sundanese machine translation, none of the research conducted the English into Sundanese language. In this study using the encoder and decoder LSTM architecture achieve a good result regarding building a model for machine translation task. The performance of this model has achieved 0.99 accuracies in both training and testing as well as less than 0.1 loss value to both training and testing data. This model also achieves more than 0.8 average BLEU score for both training and testing data.