p-Index From 2020 - 2025
6.889
P-Index
This Author published in this journals
All Journal Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) CommIT (Communication & Information Technology) Journal of ICT Research and Applications International Journal of Advances in Intelligent Informatics Scientific Journal of Informatics Journal of Information Systems Engineering and Business Intelligence Indonesian Journal on Computing (Indo-JC) IJoICT (International Journal on Information and Communication Technology) JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Journal of Information Technology and Computer Science (JOINTECS) JURNAL MEDIA INFORMATIKA BUDIDARMA Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control JURIKOM (Jurnal Riset Komputer) Building of Informatics, Technology and Science Journal of Information Systems and Informatics RADIAL: JuRnal PerADaban SaIns RekAyasan dan TeknoLogi Indonesian Journal of Electrical Engineering and Computer Science Journal of Computer System and Informatics (JoSYC) Madani : Indonesian Journal of Civil Society Teknika Journal of Applied Data Sciences KLIK: Kajian Ilmiah Informatika dan Komputer Journal of Dinda : Data Science, Information Technology, and Data Analytics Jurnal Ilmiah IT CIDA : Diseminasi Teknologi Informasi SisInfo : Jurnal Sistem Informasi dan Informatika Jurnal INFOTEL RADIAL: Jurnal Peradaban Sains, Rekayasa dan Teknologi
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Sentiment analysis on vaccine COVID-19 using word count and Gaussian Naïve Bayes Nur Ghaniaviyanto Ramadhan; Faisal Dharma Adhinata
Indonesian Journal of Electrical Engineering and Computer Science Vol 26, No 3: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v26.i3.pp1765-1772

Abstract

Since the Coronavirus disease 2019 (COVID-19) pandemic hit the world, it had a significant negative impact on individuals, governments, and the global economy. One way to reduce the negative impact of COVID-19 is to vaccinate. Briefly, vaccination aims to enable the formed immune system to remember the characteristics of the targeted viral pathogen and be able to initiate an immune response that is rapid and strong enough to defeat future live viral pathogens. However, there are still many people in the world who are anti-vaccine. This certainly greatly hampers the process of accelerating the formation of the body's immune system widely in the community. Anti-vaccine people can be found on various social media platforms. Twitter was chosen as the data source because twitter is a common source of text for sentiment analysis. This study aims to analyze public sentiment on the COVID-19 vaccine through twitter in the form of tweets and retweets. This study uses the Gaussian Naïve Bayes method to see the results of the classification of sentiment analysis. The results obtained based on experiments prove that the Gaussian Naïve Bayes method can produce an average accuracy of 97.48% for each vaccine dataset used.