p-Index From 2021 - 2026
7.007
P-Index
This Author published in this journals
All Journal Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) CommIT (Communication & Information Technology) Journal of ICT Research and Applications International Journal of Advances in Intelligent Informatics Scientific Journal of Informatics Journal of Information Systems Engineering and Business Intelligence Indonesian Journal on Computing (Indo-JC) IJoICT (International Journal on Information and Communication Technology) JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Journal of Information Technology and Computer Science (JOINTECS) JURNAL MEDIA INFORMATIKA BUDIDARMA Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control JURIKOM (Jurnal Riset Komputer) Building of Informatics, Technology and Science Journal of Information Systems and Informatics RADIAL: JuRnal PerADaban SaIns RekAyasan dan TeknoLogi Indonesian Journal of Electrical Engineering and Computer Science Journal of Computer System and Informatics (JoSYC) Madani : Indonesian Journal of Civil Society Teknika Journal of Applied Data Sciences KLIK: Kajian Ilmiah Informatika dan Komputer Journal of Dinda : Data Science, Information Technology, and Data Analytics Jurnal Ilmiah IT CIDA : Diseminasi Teknologi Informasi SisInfo : Jurnal Sistem Informasi dan Informatika Jurnal INFOTEL RADIAL: Jurnal Peradaban Sains, Rekayasa dan Teknologi
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Computer System and Informatics (JoSYC)

Analisis Penerapan Metode Ensembled Learning Decision Tree Pada Klasifikasi Virus Hepatitis C Rifqi Alfinnur Charisma; Sofiyudin Pamungkas; Rifqi Akmal Saputra; Nur Ghaniaviyanto Ramadhan; Faisal Dharma Adhinata
Journal of Computer System and Informatics (JoSYC) Vol 3 No 4 (2022): August 2022
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/josyc.v3i4.2064

Abstract

Hepatitis C virus is a deadly virus that attacks the liver. This virus can cause chronic infections, even 80% of sufferers have experienced an illness. To minimize the risk of exposure to disease caused by the hepatitis C virus, consultation with a doctor or using an intelligent detection system can be conducted. Of course, if used a smart strategy, our need data that already contains parameters related to hepatitis C. This study uses a public dataset that the public can access. So, the purpose of this study is to classify patients with hepatitis C virus using a tree-based algorithm. The results obtained by applying the proposed algorithm are 93% accuracy, 92% precision, and 91% recall. This study also performs comparisons with other methods, namely naive bayes. The results show that the tree-based way is superior.