p-Index From 2021 - 2026
7.007
P-Index
This Author published in this journals
All Journal Jurnal Ilmiah Teknik Elektro Komputer dan Informatika (JITEKI) CommIT (Communication & Information Technology) Journal of ICT Research and Applications International Journal of Advances in Intelligent Informatics Scientific Journal of Informatics Journal of Information Systems Engineering and Business Intelligence Indonesian Journal on Computing (Indo-JC) IJoICT (International Journal on Information and Communication Technology) JOIV : International Journal on Informatics Visualization Sinkron : Jurnal dan Penelitian Teknik Informatika Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) International Journal of Artificial Intelligence Research Journal of Information Technology and Computer Science (JOINTECS) JURNAL MEDIA INFORMATIKA BUDIDARMA Kinetik: Game Technology, Information System, Computer Network, Computing, Electronics, and Control JURIKOM (Jurnal Riset Komputer) Building of Informatics, Technology and Science Journal of Information Systems and Informatics RADIAL: JuRnal PerADaban SaIns RekAyasan dan TeknoLogi Indonesian Journal of Electrical Engineering and Computer Science Journal of Computer System and Informatics (JoSYC) Madani : Indonesian Journal of Civil Society Teknika Journal of Applied Data Sciences KLIK: Kajian Ilmiah Informatika dan Komputer Journal of Dinda : Data Science, Information Technology, and Data Analytics Jurnal Ilmiah IT CIDA : Diseminasi Teknologi Informasi SisInfo : Jurnal Sistem Informasi dan Informatika Jurnal INFOTEL RADIAL: Jurnal Peradaban Sains, Rekayasa dan Teknologi
Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Scientific Journal of Informatics

Comparative Analysis of ADASYN-SVM and SMOTE-SVM Methods on the Detection of Type 2 Diabetes Mellitus Ramadhan, Nur Ghaniaviyanto
Scientific Journal of Informatics Vol 8, No 2 (2021): November 2021
Publisher : Universitas Negeri Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15294/sji.v8i2.32484

Abstract

Most people with diabetes in the world are type 2. We can detect diabetes early to prevent things that are not desirable by checking sugar and insulin levels with the doctor. In addition to using this method, people with diabetes can also be grouped based on data from diabetes examination results. However, most of the data on health examination results have several parameters that are difficult for the public to understand. These problems can be done by means of automatic classification. In addition to these problems, there is another problem in the form of an unbalanced amount of data for diabetics and non-diabetics. This problem can be done by balancing the amount of data using the model to increase the ratio of the amount of data that is small or decrease the ratio of the amount of data that is too much. Purpose: This study aims to detect type 2 diabetes mellitus using the SVM classification model and analyze the results of the comparison using the SMOTE and ADASYN data balancing technique which is the best. Methods/Study design/approach: The research method starts from collecting the diabetes dataset, then the dataset cleaning process is carried out whether there is a null value or not. After applying two oversampling methods to analyze which method is the most appropriate. After the oversampling technique was carried out, data classification was carried out using a support vector machine model to see the accuracy results. Result/Findings: The results obtained by the ADASYN-SVM method are superior to SMOTE-SVM. The ADASYNSVM method has an accuracy of 87.3%, while the SMOTE-SVM has an accuracy of 85.4%. Novelty/Originality/Value: The data used in this study came from the Karya Medika clinic, Indonesia which contains parameters related to type 2 diabetes.