Claim Missing Document
Check
Articles

Found 17 Documents
Search

Pemanfaatan Uap Panas Insinerator untuk Produksi Pupuk Organik di Panti Asuhan dan Pondok Lansia Al-Maa’uun, Wonosobo Pratiwi, Ilham Ayu Putri; Krisnaputra, Radhian; Aisyah, Nyayu; Bahiuddin, Irfan; Maulana, Arju Ridho; Sena, Zhafran Huda
J-Dinamika : Jurnal Pengabdian Masyarakat Vol 10 No 1 (2025): April
Publisher : Politeknik Negeri Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Panti Asuhan dan Pondok Lansia Al-Maa'uun, Wonosobo menghadapi tantangan dalam mengelola sampah organik secara efisien. Sebagai solusi, program pelatihan ini bertujuan untuk memanfaatkan uap panas insinerator dalam produksi pupuk organik. Metode yang digunakan melibatkan proses insinerasi sampah organik dan anorganik dengan massa awal masing-masing 2 kg. Sampah organik dibakar selama 20 menit, menghasilkan volume pupuk sebesar 400 ml dengan massa 365 g. Di sisi lain, sampah anorganik memerlukan waktu pembakaran lebih lama, yaitu 30 menit. Hasil ini menunjukkan perbedaan signifikan dalam efisiensi pembakaran yang dihasilkan antara kedua jenis sampah. Berdasarkan pembakaran sampah organik, maka akan mengahsilkan pupuk yang berpotensi digunakan sebagai bahan pupuk organik untuk menunjang pertanian dan penghijauan di lingkungan panti asuhan dan pondok lansia. Pelatihan ini tidak hanya menawarkan solusi pengelolaan sampah yang ramah lingkungan, tetapi juga berperan dalam meningkatkan pemahaman masyarakat tentang pentingnya teknologi berbasis insinerator dalam mengelola limbah secara efektif. Program ini diharapkan dapat menginspirasi penerapan teknologi serupa di komunitas lain dengan tujuan keberlanjutan lingkungan dan peningkatan kualitas hidup.
Sistem Integrasi (ISO 50001) Dengan Kombinasi Chi-Square Test Untuk Analisis Manajemen Penggunaan Energi Operasional Alat Berat Pada Perusahaan Terminal Pelabuhan Ramadhana, Ridho Rizky; Prayitno, Yosephus Ardean Kurnianto; Irfan Bahiuddin; Setyawan Bekti Wibowo; Sugiyanto
Jurnal Teknologi dan Rekayasa Alat Berat Vol 2 No 2 (2025): JTRAB Volume 2, No 2, 2025
Publisher : Department of Mechanical Engineering, Vocational College, Gadjah Mada University.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jtrab.v2i2.14637

Abstract

Port terminal companies play an important role in the growth of international trade, with more than 85% of global cargo traffic transported via sea routes and ports. As international trade continues to grow in line with the increasing use of energy, it is necessary to implement energy management strategies to maximize energy utilization. An analysis of the energy management maturity level of a port terminal company based on ISO 50001, combined with a Chi-square test, was carried out to evaluate the actual use of fuel oil (BBM) in equipment. The results showed a maturity level value of ≥ 4 and a significant value in the Chi-square test, indicating an ideal condition for energy management in industrial companies. On the other hand, there is a fluctuating trend in the actual fuel oil usage ratio. This indicates that the company needs to regularly evaluate the alignment between managerial policy-making and actual field data, enabling the company to promptly address any deficiencies occurring on site.
Pengembangan Sistem Monitoring Berbasis Internet of Things untuk Perawatan Berkala Kendaraan dan Alat Berat dengan Fitur Pelaporan Terintegrasi dan GPS Pratama, Handika Yoga; Surojo; M. Hilmi; Bahiuddin, Irfan
Jurnal Teknologi dan Rekayasa Alat Berat Vol 2 No 2 (2025): JTRAB Volume 2, No 2, 2025
Publisher : Department of Mechanical Engineering, Vocational College, Gadjah Mada University.

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jtrab.v2i2.18656

Abstract

This study aims to develop an Internet of Things (IoT)-based hourmeter monitoring system to improve the efficiency and accuracy of periodic maintenance for vehicles and heavy equipment. The system is designed to integrate with a website that enables real-time monitoring of operating hours, reporting, and maintenance notifications. Testing was conducted on one light vehicle and one heavy equipment unit over a period of four days. The developed system was able to accurately record operating time, provide maintenance notifications via alarms, and monitor the unit’s location and performance using GPS data. The test results showed that the system successfully recorded travel distance and average speed, with the light vehicle achieving 14.2 km and 11.9 km/h, while the heavy equipment recorded 1.98 km and 7.17 km/h. The integration of hourmeter monitoring and GPS features proved to enhance supervision effectiveness and maintenance schedule prediction, thus potentially reducing the risk of damage and downtime. This system offers an innovative solution that can be adopted in the heavy equipment industry to support more optimal maintenance management.
Advanced State Estimations for Gravitational Oil/Water Separator Tanks using a Kalman Filter and Multi-Model Hypothesis Testing Cahya, Zaid; Siregar, Parsaulian; Ekawati, Estiyanti; Bahiuddin, Irfan; Cahya, Dito Eka; Nugroho, Tsani Hendro; Taufiqurrohman, Heru; Boudaoud, Mohammed
Jurnal Elektronika dan Telekomunikasi Vol 25, No 1 (2025)
Publisher : National Research and Innovation Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/jet.682

Abstract

This paper presents a new application of the Kalman filter with Hypothesis testing for a fast and robust model-based estimator for measuring level interfaces of atmospheric gravitational oil-water separator tanks. A newly developed semi-empirical linearized model is applied in the estimator algorithm. A multi-model hypothesis-testing algorithm for covering more scenarios was deployed. The proposed method provides a cost-effective and straightforward solution for estimating all state variables in an oil-water separator. Our evaluation results demonstrate that the proposed algorithm achieves high accuracy with an observation error of less than 2% and a false alarm rate of 3.3% under 50-70% working conditions. Furthermore, the estimator can effectively handle process noise with a 10% feed offset. The proposed platform requires only a few installed sensors yet can accurately estimate unknown parameters. The proposed approach offers a robust and practical soft sensor solution for gravitational oil/water separators
An in-situ experimental and numerical evaluation on thermoelectric generators performance utilizing diesel engine exhaust heat Sugiyanto, Sugiyanto; Aisyah, Nyayu; Prayitno, Yosephus Ardean Kurnianto; Bahiuddin, Irfan
Jurnal Polimesin Vol 23, No 5 (2025): October
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jpl.v23i5.7615

Abstract

Waste Heat Recovery (WHR) from heavy-duty diesel generators using Thermoelectric Generators (TEGs) offers a potential way to improve total system efficiency and reduce fuel consumption. This study combines experiments and numerical simulation to evaluate the performance of Hi-Z HZ 14 TEGs modules applied to a 6-cylinder, 60 kVA diesel generator. Experimentally, TEG modules were mounted equidistantly along the exhaust manifold, 40 cm from the engine, and tested at idle (750 rpm) with and without active air-side cooling. Hot- and cold-side temperatures, open-circuit Voltage (Voc), load power, and conversion efficiency were recorded. A matching TEG configuration was simulated under the same boundary conditions. As a result, active cooling increased the temperature differential and consistently improved power output and efficiency relative to natural convection. An efficiency of 2.1% was observed, in reasonable agreement with the simulation and consistent with typical TEGs performance under comparable operating conditions. Although this value confirms the feasibility of TEG integration in heavy-duty diesel exhaust systems, further improvements are possible through material selection, heat-sink optimization, and advanced cooling strategies.
RANCANGAN SISTEM HIDROLIK PADA FRONT ATTACHMENT ALAT PERAGA MINI EXCAVATOR Purwanto , Sigit; Aisyah , Nyayu; Prihadianto, Braam Delfian; Krisnaputra , Radhian; Wismo , F. Eko; Bahiuddin , Irfan
Jurnal Rekayasa Mesin Vol. 15 No. 2 (2024)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v15i2.1729

Abstract

As one of the heavy equipment, an excavator is used to facilitate construction work and streamline time and energy. Hydraulic excavators are widely used in construction, mining, quarrying, and forestry applications. A hydraulic excavator is a type of heavy equipment that has several functions such as digging, loading, lifting, scraping, grading, braking, etc. One of the products which is developed by the Mechanical Engineering Department of Vocational School (SV-UGM) is the Mini Excavator. Mini Excavator has a function as excavators in general. A smaller size makes it easier to operate and apply in the field are more compact and do not require a large area. This equipment is expected to be the right teaching aid in supporting the learning process of students of the Heavy Equipment Management and Maintenance Engineering Study Program in the Mechanical Engineering Department. For the learning process to be optimal, the equipment used should be optimal. Therefore, in this research, the design and construction of the Traction Drive System for Backhoe Type Hydraulic Excavators will be carried out and some testing will also be conducted to know the performance of the mini excavator
Analisis Pengaruh Campuran Biodiesel terhadap Performa dan Emisi Gas Buang Mesin Diesel Common-Rail Pratiwi, Ilham Ayu Putri; Krisnaputra, Radhian; Bahiuddin, Irfan; Djati, Isworo; Nugraha, Sindhu Arya
Jurnal Mekanik Terapan Vol 6 No 3 (2025): Desember 2025
Publisher : Politeknik Negeri Jakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32722/jmt.v6i3.8042

Abstract

This study aims to analyze the effect of biodiesel blend variations on the performance and exhaust emission characteristics of a diesel engine equipped with a Common-Rail Direct Injection (CRDI) system. The experimental tests were conducted using two types of fuel, namely B50 (50% biodiesel and 50% diesel) and B100 (pure biodiesel). The evaluated parameters included fuel consumption (FC), specific fuel consumption (SFC), and exhaust emissions consisting of CO, CO₂, NO, NOₓ, O₂, and SO₂. Tests were performed at three engine speeds (800, 1000, and 1500 rpm) and three electrical load levels (600 W, 1000 W, and 2000 W). The results showed that both FC and SFC increased with higher engine speed and load, where the average SFC of B100 was 5–15% higher than that of B50 due to the lower calorific value of biodiesel. In terms of emissions, the use of B100 reduced CO concentration by up to 10% compared to B50, while NOₓ emissions increased by approximately 15–25% at higher speeds. SO₂ emissions were recorded at 0 ppm under all test conditions, indicating that biodiesel is sulfur-free. These findings confirm that pure biodiesel can be effectively utilized in modern diesel engines with common-rail injection systems, providing good combustion efficiency and contributing to the reduction of exhaust gas emissions.