Claim Missing Document
Check
Articles

Found 16 Documents
Search

Klasifikasi Kondisi Janin Berdasarkan Data Kardiotogram Menggunakan Algoritma Naive Bayes Syah Utama, Isruel; Haerani, Elin; Wulandari, Fitri; Ramadhani, Siti
Bulletin of Computer Science Research Vol. 5 No. 4 (2025): June 2025
Publisher : Forum Kerjasama Pendidikan Tinggi (FKPT)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47065/bulletincsr.v5i4.584

Abstract

Fetal health during pregnancy is a crucial aspect that can be monitored through cardiotocography (CTG) data; however, manual interpretation of this data often encounters challenges due to class imbalance. This study aims to develop a fetal condition classification model using the Naive Bayes algorithm combined with the Synthetic Minority Over-sampling Technique (SMOTE) to address the disparity in class distribution. The CTG dataset, obtained from Kaggle, consists of 2,126 records categorized into three target classes: Normal, Suspect, and Pathological. Data processing followed the Knowledge Discovery in Databases (KDD) framework, including data selection, cleaning, normalization, splitting into four ratios (70:30, 80:20, 85:15, and 90:10), SMOTE application, and model evaluation using accuracy and F1-Macro metrics. The results showed that the 80:20 ratio yielded the highest accuracy at 79.81%, while the 90:10 ratio produced the highest F1-Macro score of 0.6788. These findings indicate that although accuracy remained relatively stable, the F1-Macro metric provided a better representation of performance across all classes, especially minority ones. The application of SMOTE proved effective in balancing class distribution and enhancing model sensitivity. This study serves as a foundational step in developing a more reliable and adaptive fetal condition classification system and highlights opportunities for further exploration of alternative algorithms and SMOTE parameter optimization.
PENJAJAHAN BARAT ATAS DUNIA ISLAM DAN PERJUANGAN KEMERDEKAAN NEGARA-NEGARA ISLAM Aqsho, Muhammad; Day, Dhea Wulandari; Siregar, Isnaini Sahara; Qomariah, Nurin; Sipayung, Siti Aisyah; Ramadhani, Siti
Almufida : Jurnal Ilmu-Ilmu Keislaman Vol 9, No 2 (2024): Almufida: Jurnal Ilmu-Ilmu Keislaman
Publisher : Universitas Dharmawangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46576/almufida.v9i2.5762

Abstract

Sejarah perkembangan Islam mencakup tiga periode utama yang membentang sepanjang waktu, yakni periode klasik, periode pertengahan, dan periode modern. Dengan memahami sejarah dan tantangan dalam periode modern, umat Islam dapat terus menggali potensi pembaharuan dalam rangka menjawab kebutuhan dan realitas zaman Metode penelitian yang digunakan dalam tulisan ini adalah studi kepustakaan, dengan menggunakan metode kualitatif untuk memperoleh informasi deskriptif. Dengan memahami sejarah dan tantangan dalam periode modern, umat Islam dapat terus menggali potensi pembaharuan dalam rangka menjawab kebutuhan dan realitas zaman.  Sejarah perjuangan kemerdekaan mengajarkan umat Islam tentang pentingnya persatuan, ketahanan, dan semangat perjuangan. Dengan mengenang masa lalu, umat Islam dapat memetik pelajaran berharga untuk membentuk masa depan yang lebih cerah dan penuh harapan. 
Kepemimpinan Kepala Sekolah Dalam Meningkatkan Kinerja Guru PAI Di SMA Negri 1 Medan Ramadhani, Siti; Tumiran, Tumiran
Educate: Jurnal Ilmu Pendidikan dan Pengajaran Vol 4, No 2 (2025)
Publisher : Educate: Jurnal Ilmu Pendidikan dan Pengajaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56114/edu.v4i2.12543

Abstract

The purpose of this study is to find out (1) How the Principal's leadership in improving the performance of PAI teachers at SMA Negeri 1 Medan, (2) to determine the supporting and inhibiting factors of the Principal's leadership in improving the performance of PAI teachers at SMA Negeri 1 Medan. This research is a field research. The method used in this study is qualitative with a qualitative descriptive approach and includes a type of qualitative research that produces descriptive data in the form of written or spoken words. Research data sources are primary and secondary data and data collection techniques by conducting observations, interviews, and documentation. The main findings indicate that visionary, empowering, and collaborative leadership plays a significant role in motivating Islamic Education (PAI) teachers to achieve higher standards. The implication of this study is the need for leadership competency development for school principals and the enhancement of collaboration between school leadership and teaching staff to achieve better educational goals.
APPLICATION OF K-NEAREST NEIGHBOR REGRESSION METHOD FOR RICE YIELD PREDICTION Handayani, Lestari; Alfarabi.B, Alif; Aprilia, Tasya; Wulandari, Indah; Jasril, Jasril; Ramadhani, Siti; Budianita, Elvia
Jurnal CoreIT: Jurnal Hasil Penelitian Ilmu Komputer dan Teknologi Informasi Vol 11, No 1 (2025): June 2025
Publisher : Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24014/coreit.v11i1.30907

Abstract

Rice plants with the Latin name Oryza Sativa are food plants that are widely used as the main food crop in various countries, one of which is Indonesia. Indonesia is ranked 4th as the largest rice consuming country in the world. This requires the availability of rice to be maintained. Unstable rice production can be a problem. One of the districts that has experienced a decline in rice production in recent years is the district of Lima puluh kota located in West Sumatra province. This requires prediction of rice production so that it can be used as a benchmark for the future. This study uses data on rice production in fifty cities from 2013 to 2023. The method used to predict is k-nearest neighbor regression (KNN Regression). The data division uses rasio 90 : 10. In testing the data used is divided into 2, namely normal data and data that has been normalized. The test results produce the smallest mean absolute percentage error (MAPE) value of 6.98% on normal data, the value of k is 6 with data division using k-fold 5. Based on the resulting MAPE value, it can be said that KNN Regression can predict rice production results very accurately.
Pelatihan Public speaking untuk Membangun Kepercayaan Diri dan Keterampilan Berbicara pada Remaja Dusun Ngelo Desa Jetak Kecamatan Tulakan Kabupaten Pacitan Jawa Timur Ramadhani, Siti; Widoyoko, Riza Dwi Tyas; Sutopo, Bakti
Jurnal Abdidas Vol. 6 No. 4 (2025): Agustus 2025
Publisher : Universitas Pahlawan Tuanku Tambusai

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/abdidas.v6i4.1166

Abstract

Kemampuan berbicara di depan publik menjadi kebutuhan utama bagi siapapun pada era kini tak terkecuali bagi remaja. Akan tetapi untuk mendapatkan kemampuan tersebut tidak mudah karena terbatasnya wahana. Salah satu peranan yang dapat dilakukan oleh kalangan akademisi adalah mengadakan pelatihan public speaking. Pelatihan public speaking merupakan salah satu upaya strategis untuk meningkatkan kepercayaan diri dan keterampilan komunikasi remaja, khususnya di wilayah pedesaan yang memiliki keterbatasan akses terhadap pelatihan formal. Kegiatan ini dilaksanakan di Dusun Ngelo, Desa Jetak Tulakan Pacitan Jawa Timur. Adapun peserta kegiatannya adalah remaja yang berada di berbagai dusun di Desa Jetak. Metode pelatihan terbagi dalam tiga tahap, yaitu: pengenalan materi dasar public speaking, penyusunan teks MC, dan praktik membawakan acara. Hasil kegiatan menunjukkan adanya peningkatan kepercayaan diri dan kemampuan berbicara peserta, baik dalam aspek verbal maupun nonverbal. Pelatihan ini juga menciptakan suasana belajar yang positif dan kolaboratif antarpeserta. Dengan pendekatan praktik dan umpan balik yang membangun, pelatihan ini efektif dalam membentuk keterampilan komunikasi remaja secara menyeluruh.
Sensitivity Analysis of Parameter Control in Leukemia Classification Using Variable-Length Particle Swarm Optimization Ramadhani, Siti; Handayani, Lestari Handayani; Muhammad Fikri; Theam Foo Ng; Sumayyah Dzulkifly; Roziana Ariffin; Shir Li Wang
Digital Zone: Jurnal Teknologi Informasi dan Komunikasi Vol. 16 No. 2 (2025): Digital Zone: Jurnal Teknologi Informasi dan Komunikasi
Publisher : Publisher: Fakultas Ilmu Komputer, Institution: Universitas Lancang Kuning

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31849/digitalzone.v16i2.27473

Abstract

Machine learning has the potential to support hematologists in classifying leukemia by identifying abnormal chromosomes and specific gene markers. One effective technique for feature selection is Variable-Length Particle Swarm Optimization (VLPSO), where its performance depends heavily on parameter control, specifically the inertia weight (w) and acceleration factors (c), which regulate the search process. In previous VLPSO, static types of parameter control were applied to the  Factor, and time-varying types were used by the   Factor. Although its results showed good performance in VLPSO, there was no separation in the treatment of training data and test data, leaving a gap in understanding their impacts for real-world applications.  This study explores how different parameter control strategies (static, time-varying, and adaptive) affect the performance of VLPSO with two comparison adaptive parameter control approaches, Adaptive 1 and Adaptive 2, in the VLPSO framework, each designed to dynamically adjust the control parameters w and c in different ways. The 10-fold cross-validation shows that VLPSO with an Adaptive one-parameter setting achieves better generalization with low train-test differences, especially in Decision Tree and Naïve Bayes classifiers, though with higher variability. Adaptive 2-parameter setting of VLPSO offers more consistent results with narrower variability across different settings. Static methods are the least reliable, while time-varying controls show moderate but unstable performance. Adaptive parameter tuning is recommended to improve VLPSO's stability, flexibility, and classification accuracy in biomedical applications. The results provide recommendations for parameter settings using an adaptive approach that has been proven to enhance the performance of VLPSO