Claim Missing Document
Check
Articles

Found 23 Documents
Search

Quantifying the Impact of Siderite Composition and Reservoir Resistivity (Rt) on Water Saturation Estimation in Low-Resistivity Sideritic Sandstone Reservoirs Using the Graphic Plot Method Sarju Winardi; Sugeng Sapto Surjono; Donatus Hendra Amijaya; Wiwit Suryanto
Scientific Contributions Oil and Gas Vol. 47 No. 2 (2024): SCOG
Publisher : Testing Center for Oil and Gas LEMIGAS

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

The case studies on low-resistivity-low-contrast (LRLC) reservoirs have started using a conductive matrix model approach based on the assumption that the rock matrix is composed of conductive minerals. The previous studies on reservoir resistivity (Rt) against conductive-minerals-rich sandstone were limited to pyritic types without developing the others such as the sideritic which was found in Indonesia. Therefore, there is a need to determine the relationship between siderite volume within the sandstone reservoir and the reduction number of Rt. Relation profiles were applied to accurately estimate the actual water saturation (Sw) while the resistance of the sandstone samples was determined through the voltage (V, volt) and current (I, ampere). The samples were designed as pseudo-core in the laboratory and simulated to have siderite composition in the range of 0-30% followed by the injection of brine at different saturation conditions. The Rt was calculated through the modification of Wenner and Ohm’s Law and later compared graphically with siderite volume of each Sw line. It was observed from the results that siderite led to an exponential reduction in Rt value. Moreover, the threshold volume of siderite required to reduce Rt significantly to 50% of the original value was found to be 6%. The actual Sw was later estimated simply through the application of the Graphic Plot Method from the curves. Keywords: low resistivity, reservoir, LRLC, siderite, sandstone, water saturation
Bioerosion in the Late Eocene Discocyclina discus sowerbyi (Nuttall, 1926) in Bayat Area, Indonesia: Implications for Paleoecology Rahmawati, Diana; Surjono, Sugeng Sapto; Barianto, Didit Hadi; Rahardjo, Wartono
Journal of Tropical Biodiversity and Biotechnology Vol 9, No 4 (2024): December
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jtbb.93779

Abstract

This paper discusses about the bioerosion discovered in carbonate tests of Discocyclina discus sowerbyi (Nuttall, 1926), a large benthic foraminifera from the Priabonian (Late Eocene). The study material was sampled from the Gamping beds in the Wungkal-Gamping Formation in Bayat, Indonesia. We discovered four bioerosional trace fossils from three different ichnogenera demonstrate bioerosion from the surface test analysis. Oichnus simplex and Oichnus paraboloides are ichnogenus Oichnus diagnostic drilling holes that are often found on the surface. Caulostrepsis isp. exhibits the presence of uncomplicated U-shaped borings. The observed formation of drill holes can be mostly linked to the predatory behaviour of gastropods, while other trace fossils are predominantly associated with the burrowing activities of worms. The occurrence of well-preserved individual tests exhibiting no signs of bioerosion is infrequently observed in D. discus sowerbyi. In addition, bioerosion occurs more frequently in the microspheric generation than in the megalospheric generation. This research also demonstrates for the first time in Indonesia that parrotfish bite marks have developed on individual tests of the microspheric generation of D. discus sowerbyi. The taphonomic characteristics exhibited by the bioeroded and encrusted D. discus sowerbyi specimens can serve as reliable paleoecological indicators for sediment deposition occurring at an intermediate to high sedimentation regime. The occurrence of larger foraminifera with some bioerosional trace fossil highly proficient at documenting shallow marine sclerobionts. 
Planktonic Foraminifera Biostratigraphy of the Pliocene Kintom and Bongka Formation, Central Sulawesi, Indonesia Novian, Moch. Indra; Barianto, Didit Hadi; Husein, Salahuddin; Surjono, Sugeng Sapto
Journal of Tropical Biodiversity and Biotechnology Vol 9, No 4 (2024): December
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jtbb.94685

Abstract

The Pliocene sediments exposed in the eastern arm of southern Sulawesi consist of Kintom and Bongka Formations, thought to be the result of collisions in the Middle Miocene. The research area is located along the Matindok – OndoOndolu road, Banggai Regency, Central Sulawesi Province. The aims of the research is to determine the rock units that developed in the Kintom – Bongka Formation and determine the chronological time frame based on planktonic foraminifera biostratigraphy. This research used stratigraphic measurement on a scale of 1:100 and Plio-Pleistocene planktonic foraminifera biostratigraphy. A lithological column along 315 meters divided into three rock units. The marl unit and calcareous sandstone unit show characteristics similar to flysch deposits from the collision and are part of the Kintom Formation. Intergrade conglomerate gravelly sandstone deposited unconformably on top of the previous unit is part of the Bongka Formation. This last unit shows characteristics similar to molasse deposits. In total of 46 rock samples were analyzed for foraminifera biostratigraphy. Seven foraminifera biozones showing the age of rock deposition from the Early Pliocene to the Late Pleistocene.The order of the foraminifera biozone is Globorotalia tumida Brady LOZ (PL1a; 5.59 - 4.45 Ma), Globoturborotalita nepenthes Todd CRZ (PL1b; 4.45 - 4.39 Ma), Globotalia acostaensis Blow PRZ (PL2a; 4.39 – 4.31 Ma), Globotalia margaritae Bolli HOZ (PL2b; 4.31 - 3.85 Ma), Sphaeroidinellopsis seminulina Schwager HOZ (PL 3-4; 3.85 – 3.20 Ma), Globorotalia (M) miocenica Palmer/Globorotalia miocenica Palmer HOZ (PL5–6; 3.20 – 2.30 Ma), and Pulleniatina praecursor Banner & Blow HOZ (PL6–PT1a; 2.30 – 2.26 Ma).