Claim Missing Document
Check
Articles

Found 26 Documents
Search

Estimasi Parameter Model Fungsi Gaji Berdasarkan Masa Kerja Menggunakan Algoritma Levenberg-Marquardt pada Program Matlab Atika Ratna Dewi; Sulistiyasni Sulistiyasni; Dewi Erla Mahmudah; Riana Safitri
Jurnal Teknologi Informasi, Ilmu Komputer dan Manajemen Vol 2 No 1 (2018): Teknikom Vol. 2 No. 1 Tahun 2018
Publisher : LPPM STMIK Widya Utama

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (754.075 KB)

Abstract

The calculation of pension funding programneeds an assumption which can be used to predict theamount of salary when somebody is retired. This iscommonly called salary function. A salary function wasinfluenced by some factors such as inflation and merit. Thisstudy discussed the declining of salary function model basedon exponential function. The salary function model wasbased on years of service (service-based model). This modelhad been estimated using Levenberg Marquardt method onMATLAB program. After that, the model had been used tocalculate the amount of salary on pension funding program.
Simulasi Kunci Elektronis dengan Menggunakan Barcode dan Visual Basic 6.0 untuk Aplikasi Keamanan Rumah Joko Purnomo; Wika Purbasari; Atika Ratna Dewi; Rianti Yunita Kisworini; Muhammad Akbar Setiawan
Jurnal Teknologi Informasi, Ilmu Komputer dan Manajemen Vol 1 No 2 (2017): Teknikom Vol. 1 No. 2 Tahun 2017
Publisher : LPPM STMIK Widya Utama

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (116.706 KB)

Abstract

The use of manual key circulating on the market are already not very secure anymore, because manual key has some shortcomings, among others, the key is impractical because it is too heavy to be easily lost, easily stolen and easily copied. Because of the shortage of manual key usage then increasingly unpopular people and return the switch to the use of the key that works in electronic doors. Electronic door key advantages compared with manual key lock that is not easily lost because only with memorized password, operation easier and more smooth, the key could not be stolen.The same as the programming language Basic, Pascal, C and others – other. But the Basic, Pascal and C is intended for operating systems MS-DOS, while Visual Basic is intended for the Windows operating system. The barcode is essentially the order of black and white vertical stripes with different thicknesses, very simple but very useful, with uses to store data-specific data e.g. production code, expiry date, number of identity with easy and cheap, though such technology continues to evolve with the discovery of magnetic media, electronics, Rfid tags, serial eeprom (as in smart cards), slots, scanner, to the CCD and even we can make it your own. Types of barcode is very much a traditional start from i.e.
Unsupervised Feature Selection Based on Self-configuration Approaches using Multidimensional Scaling Ridho Ananda; Atika Ratna Dewi; Maifuza Binti Mohd Amin; Miftahul Huda; Gushelmi Gushelmi
Jambura Journal of Mathematics Vol 5, No 2: August 2023
Publisher : Department of Mathematics, Universitas Negeri Gorontalo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34312/jjom.v5i2.20397

Abstract

Some researchers often collect features so the principal information does not lose. However, many features sometimes cause problems. The truth of analysis results will decrease because of the irrelevant or repetitive features. To overcome it, one of the solutions is feature selection. They are divided into two, namely supervised and unsupervised learning. In supervised, the feature selection can only be carried out on data containing labels. Meanwhile, in unsupervised, there are three approaches correlation, configuration, and variance. This study proposes an unsupervised feature selection by combining correlation and configuration using multidimensional scaling (MDS). The proposed algorithm is MDS-Clustering, which uses hierarchical and non-hierarchical clustering. The result of MDS-clustering is compared with the existing feature selection. There are three schemes in the comparison process, namely, 75\%, 50\%, and 25\% feature selected. The dataset used in this study is the UCI dataset. The validities used are the goodness-of-fit of the proximity matrix (GoFP) and the accuracy of the classification algorithm. The comparison results show that the feature selection proposed is certainly worth recommending as a new approach in the feature selection process. Besides, on certain data, the algorithm can outperform the existing feature selection.
Peningkatan Kapasitas Penjualan Pada Kader Pemberdayaan Masyarakat Desa Melalui Pelatihan Pemasaran Digital Ummi Athiyah; Shintia Dwi Alika; Atika Ratna Dewi; Muhammad Quthb Habiburrahman; Oktavia Jazilatus Sa’adah; Arif Wirawan Muhammad
Madani : Indonesian Journal of Civil Society Vol. 6 No. 2 (2024): Madani : Agustus 2024
Publisher : Politeknik Negeri Cilacap

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35970/madani.v6i2.2193

Abstract

Empowering rural communities is essential for sustainable development, especially in the economic sector. This community service program aims to increase the sales capacity of the Sunyalangu Village Community Empowerment Cadres (KPMD) through digital marketing training. The main problems include simple packaging, conventional marketing methods, and poor business management practices. This program uses a community service method, Service Learning (SL), which involves practical steps such as product packaging training and digital marketing strategy workshops. This project significantly improved participants' skills in using sealer machines and promoting products online, especially on platforms like Shopee. The method of implementing strategic digital marketing communication training was carried out with a structured and interactive approach over two meetings. The results showed the importance of digital literacy in rural areas to achieve maximum business potential and improve economic sustainability. This training has successfully introduced participants to the world of online trading and provided them with practical skills in utilizing digital platforms to market processed products from the community.
Analisis efektivitas vaksin booster pada kasus terkonfirmasi positif Covid-19 menggunakan uji Mann-Whitney Ulya, Fadilla Zundina; Dewi, Atika Ratna; Winesti, Alifia Zahra; Nurlita, Laksmi Dyah
Majalah Ilmiah Matematika dan Statistika Vol. 23 No. 2 (2023): Majalah Ilmiah Matematika dan Statistika
Publisher : Jurusan Matematika FMIPA Universitas Jember

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.19184/mims.v23i2.38190

Abstract

Covid cases in Indonesia have started to decline since the vaccination program was carried out in January 2021. Until now the vaccination program in Indonesia has reached the third vaccination stage or booster vaccine. The booster vaccine aims to strengthen the vaccine dose that has been given previously, with the hope of reducing the number of confirmed patients with the Covid-19 virus. To determine the effectiveness of the booster vaccine in reducing the number of Covid-19 in Indonesia, it is necessary to conduct research using the Mann-Whitney non-parametric trial method. This journal will discuss the analysis of the effectiveness of the third dose (booster) vaccine using the Mann-Whitney test. The data collection used is data on the number of patients confirmed positive for Covid before the booster vaccine, namely from July to December 2021 and the number of patients confirmed positive after the booster vaccine from February to July 2022. Whitney manually is 15 while the p-value value in the calculation of Mann Whitney with SPSS is 0.631. The results of calculations provide a conclusion that the third dose vaccination (booster) is not effective in the reducing the number of patients of covid-19 confirmed for the Covid-19.Keywords: Covid-19, Vaccines, Mann Whitney testMSC2020: 62G05, 62G10
Komparasi Algoritme C4.5 Dan Naïve Bayes Dalam Klasifikasi Produk Zam–Zam Time Berdasarkan Tingkat Kepuasan Pelanggan Martiyaningsih, Dwi Puspa; Ramadhani, Rima Dias; Dewi, Atika Ratna
Progresif: Jurnal Ilmiah Komputer Vol 19, No 2: Agustus 2023
Publisher : STMIK Banjarbaru

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35889/progresif.v19i2.1226

Abstract

The grouping of Zam-Zam Time products based on the level of customer satisfaction is carried out using the C4.5 and Naïve Bayes classification algorithms. Algorithm classification for Zam-Zam Time products is carried out to find out which products are classified as Best Selling or Less Selling. The purpose of this study is to measure and analyze the best algorithm for handling data on the level of customer satisfaction. Zam-Zam Time is classified as a best seller or not a best seller. The method used in this study was data preprocessing by distributing questionnaires and labeling taken from private or primary data from Zam-Zam Time itself as well as the results of a questionnaire of 400 customer respondents, then a classification analysis process was carried out. The results of the performance of the C4.5 Algorithm in the classification of Zam-Zam Time products are classified as Best Selling or Less Selling, namely with a Training data accuracy value of 98%, computation time of 0.003989458084106445 seconds, Testing data accuracy value of 96%, commutation time of 0.001993417739868164 seconds, with the 8th max_depth, and while Naïve Bayes Data Accuracy Value Training 90% computing time 0.0049860477447509766 seconds, Data Testing 85%, computing time 0.0019948482513427734 seconds.Keywords: Classification; Customer Satisfaction; C4.5 Algorithm; Naïve Bayes; Zam-Zam Time AbstrakPengelompokan produk Zam-Zam Time berdasarkan tingkat kepuasan pelanggan dilakukan menggunakan klasifikasi algoritme C4.5 dan Naïve Bayes. Klasifikasi algoritme pada produk Zam-Zam Time dilakukan untuk mengetahui produk tergolong laris atau kurang laris. Tujuan dari penelitian ini mengukur dan analisis algoritme terbaik dalam menangani data tingkat kepuasan pelanggan Zam-Zam Time tergolong laris atau kurang laris. Metode yang digunakan dalam penelitian ini adalah dilakukan preprocessing data dengan penyebaran kuesioner dan pelabelan yang diambil dari data privat atau primer dari Zam-Zam Time itu sendiri serta hasil kuesioner sebanyak 400 responden pelanggan, kemudian dilakukan proses analisis klasifikasi. Hasil kinerja Algoritme C4.5 dalam klasifikasi produk Zam-Zam Time tergolong Laris atau Kurang Laris yaitu dengan Nilai Akurasi data Training 98%, waktu komputasi 0.003989458084106445 detik, nilai akurasi data Testing 96%, waktu komutasi 0.001993417739868164 detik, dengan max_depth ke-8, sedangkan Naïve Bayes Nilai Akurasi data Training 90% waktu komputasi 0.0049860477447509766 detik, data Testing 85%, waktu komputasi 0.0019948482513427734 detik.Kata Kunci: Kepuasan Pelanggan; Algoritme C4.5; Naïve Bayes; Klasifikasi; Zam-Zam Time
Pelatihan dan Pendampingan Dasar Excel: Memaksimalkan Pengelolaan Data untuk Efisiensi dan Produktivitas di Desa Pliken, Kabupaten Banyumas Nuragustin, Ika Wida; Puspita, Olivia Intan; Jausha, Dill Thafa; Wiyono, Brian Nugraha; Dewi, Atika Ratna
Jurnal Pengabdian Sosial Vol. 2 No. 2 (2024): Desember
Publisher : PT. Amirul Bangun Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59837/40h2tz67

Abstract

Desa Pliken, Kabupaten Banyumas, dikenal sebagai "Desa Tempe" karena produksi tempenya yang menjadi ciri khas dan sumber perekonomian utama. Namun, proses administrasi manual di desa ini masih menyebabkan inefisiensi. Untuk mengatasi hal tersebut, program "Pelatihan dan Pendampingan Dasar Excel" dilaksanakan oleh mahasiswa S1 Sains Data Telkom University Purwokerto. Program ini bertujuan meningkatkan keterampilan perangkat desa dan ibu-ibu kader dalam mengelola data menggunakan Microsoft Excel. Pelatihan meliputi pengelolaan tabel, rumus dasar, dan visualisasi data, dengan hasil 87% peserta merasa lebih percaya diri mengolah data. Program ini juga menghasilkan infografis berbasis data tentang identitas Desa Pliken sebagai "Desa Tempe." Evaluasi menunjukkan pelatihan berhasil meningkatkan efisiensi administrasi dan kualitas pelayanan publik, serta memberikan rekomendasi untuk menambah sesi praktik di masa depan. Program ini berdampak positif pada kompetensi digital perangkat desa dan modernisasi administrasi desa.
Pelatihan Excel untuk Meningkatkan Keterampilan Digital Santri di MBS Zam Zam Cilongok Wahyuni, Fajar Tri; Kirana, Nahila Shofie; 'Ashifa, Natasya Syafila; Nazila, Putri Ella; Dewi, Atika Ratna
Jurnal Pengabdian Sosial Vol. 2 No. 3 (2025): Januari
Publisher : PT. Amirul Bangun Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59837/w2a5mv93

Abstract

Pondok Pesantren Modern Zam Zam Cilongok (MBS Zam Zam) menyelenggarakan pelatihan Microsoft Excel untuk meningkatkan keterampilan digital santri dalam menghadapi tuntutan dunia kerja yang semakin berbasis teknologi. Pelatihan ini diikuti oleh 51 peserta dalam empat pertemuan, yang mencakup pengenalan dasar Excel, penggunaan rumus, pembuatan grafik, serta evaluasi melalui pre-test dan post-test. Hasil evaluasi menunjukkan adanya peningkatan signifikan pada kemampuan peserta, yang tercermin dalam skor post-test yang lebih tinggi dibandingkan pre-test. Instrumen evaluasi memiliki reliabilitas sebesar 0,822, menunjukkan konsistensi yang baik. Pelatihan ini bertujuan untuk memperkenalkan penggunaan teknologi dalam kegiatan sehari-hari santri, sehingga mereka dapat lebih siap bersaing di dunia kerja berbasis digital.
Perbandingan Random Forest dan Convolutional Neural Network dalam Memprediksi Peralihan Pelanggan Kusuma, Dewa Adji; Dewi, Atika Ratna; Wijaya, Andreas Rony
JISKA (Jurnal Informatika Sunan Kalijaga) Vol. 10 No. 2 (2025): May 2025
Publisher : UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14421/jiska.2025.10.2.186-194

Abstract

The rapid growth of the telecommunications industry has increased competition among companies for customers. As a result, customers often switch to other services or terminate their subscriptions. Retaining customers is very important as it is 10 times cheaper than acquiring new customers. This study compares Random Forest (RF) and Convolutional Neural Network (CNN) algorithms in predicting customer switching, using Correlation-based Feature Selection (CFS) and Recursive Feature Elimination (RFE) for data partitioning. Model evaluation using Confusion Matrix and Area Under Curve (AUC). The evaluation results show that the performance of CNN models with optimization parameters is superior. Using the CFS dataset, the test data evaluation results yielded an accuracy of 98%, AUC of 0.96, precision of 99%, recall of 92%, and F1-score of 96%. The best tuning result for CNN is achieved with three combinations of filter and kernel sizes {[64, 7], [32, 3], [16, 2]} and a pool size of 2. A limitation of this research is determining how to compare the two algorithms being evaluated effectively. Both use different approaches, namely Supervised Learning and Deep Learning.
Pengembangan Dashboard Data untuk Optimalisasi Layanan dan Literasi Perpustakaan di SD Negeri 2 Berkoh Trihastuti Yuniati; Amalia Beladinna Arifa; Shintia Dwi Alika; Atika Ratna Dewi; Habibah Ratna Fadhila Islami Hana; Vania Noverina; Aprianti Ika Larasati
SAFARI :Jurnal Pengabdian Masyarakat Indonesia Vol. 5 No. 3 (2025): Juli : SAFARI :Jurnal Pengabdian Masyarakat Indonesia
Publisher : BADAN PENERBIT STIEPARI PRESS

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.56910/safari.v5i3.2719

Abstract

The development of library management constitutes a crucial aspect in enhancing the quality of education and fostering community literacy. School libraries fulfill a fundamental role as vital learning resource centers; however, numerous institutions continue to encounter significant challenges in operational data management and the effective utilization of technology. This community service initiative aimed to develop and implement a "Dashboard Cerdas"(or Smart Dashboard) to optimize library services at SD Negeri 2 Berkoh. The methodology employed encompassed initial observation, comprehensive data collection pertaining to book characteristics and visitor patterns, the iterative development of the interactive data visualization-based "Dashboard Cerdas", and a subsequent questionnaire-based evaluation. Findings from the field implementation indicate the successful deployment of the "Dashboard Cerdas", which has significantly facilitated systematic and transparent data management. Respondents, comprising library managers and a representative teacher, expressed high levels of satisfaction regarding the improved ease of management and the “Dashboard Cerdas” demonstrated potential in enhancing service effectiveness and stimulating student reading interest. The implications of this system are substantial, it not only augments library operational efficiency and the digital literacy of the staff but also contributes meaningfully to efforts aimed at elevating student literacy through the provision of improved, data-driven library services.