Priyangga, Krisfian Tata Aneka
Unknown Affiliation

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

Spectroscopy Study of Honey Pineapple Peels Extracted in Different Solvents Kurniawan, Yehezkiel Steven; Setiyono, Edi; Adhiwibawa, Marcelinus Alfasisurya Setya; Priyangga, Krisfian Tata Aneka; Yuliati, Leny
Indonesian Journal of Natural Pigments Vol 3 No 1 (2021): February 2021
Publisher : Ma Chung Research Center for Photosynthetic Pigments

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33479/ijnp.2021.03.1.32-35

Abstract

In the present work, we investigated the extract of honey pineapple peels in distilled water, ethanol, and acetone solvents. The spectroscopy study of each extract was performed using a Fourier transform infrared (FTIR) spectrometer, an ultraviolet-visible (UV-Vis) spectrophotometer, and a spectrofluorometer. The FTIR spectrum of the distilled water extract indicated that the distilled water extract may contain alcohol or carboxylic acid compounds. Meanwhile, the ethanolic extract may contain alcohol or carboxylic acid, or ether compounds. On the other hand, the acetone extract may contain alcohol or ether or aromatic or aliphatic compounds. The UV-Vis spectrum of the honey pineapple peels extracted in the distilled water, ethanol, and acetone showed a broad absorption signal at UV region (< 300 nm), four absorption signals at UV region (232-368 nm), and four absorption signals at UV region (231-368 nm) with a weak absorption signal at the visible region at 559 nm, respectively. The distilled water and acetone extracts gave fluorescence signals, however, the ethanolic extract showed no fluorescence intensity. From the FTIR, UV-Vis, and fluorescence spectra characterization, the extracted natural pigments from the honey pineapple peels in distilled water, ethanol, and acetone solvents were identified. The distilled water extract may contain polar flavonoid or steroid compounds while the ethanolic extract may contain polar carotenoid pigments. On the other hand, the acetone extract may contain carotenoid and chlorophyll pigments as shown by an emission signal at 670 nm.
One-Pot Synthesis and In Vitro Studies of Calix[4]-2-methylresorcinarene Derivatives as Antimalarial Agents Against Plasmodium falciparum Chloroquine-Resistant Strain FCR-3 Nursofia, Baiq Ike; Kurniawan, Yehezkiel Steven; Jumina, Jumina; Pranowo, Harno Dwi; Sholikhah, Eti Nurwening; Julianus, Jeffry; Wibowo, Susalit Setya; Fatimi, Hana Anisa; Priastomo, Yoga; Priyangga, Krisfian Tata Aneka
Indonesian Journal of Chemistry Vol 24, No 6 (2024)
Publisher : Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijc.94885

Abstract

Malaria is an endemic disease in Indonesia caused by infection from the Plasmodium parasite. Recently, antimalarial resistance significantly contributed to the decline in the cure rate of malaria sufferers. In this work, three calix[4]resorcinarenes have been synthesized from 2-methylresorcinol and different benzaldehyde derivatives, i.e., 4-chlorobenzaldehyde, 4-methoxybenzaldehyde, and 4-dimethylaminobenzaldehyde through the one-pot synthesis procedure. The calix[4]resorcinarenes synthesis was done through a cyclo-condensation reaction by using HCl 37% as the catalyst and ethanol as the solvent in an one-pot reaction. The structures of the synthesized products were confirmed using Fourier transform infrared, proton-nuclear magnetic resonance, and liquid chromatography-mass spectrometry techniques. The antimalarial activity assay was evaluated against the Plasmodium falciparum FCR-3 strain through an in vitro study. Three synthesized compounds, i.e., C-4-chlorophenylcalix[4]-2-methylresorcinarene, C-4-methoxyphenylcalix[4]-2-methylresorcinarene and C-4-dimethylaminophenylcalix[4]-2-methylresorcinarene have been successfully synthesized in up to 97% yield. The C-4-chlorophenylcalix[4]-2-methylresorcinerene exhibited the most potent antimalarial activity with a half-maximal inhibitory concentration (IC50) value of 2.66 µM against P. falciparum FCR-3 while the C-4-methoxyphenylcalix[4]-2-methylresorcinarene and C-4-dimethylaminophenylcalix[4]-2-methylresorcinarene gave the IC50 values of 23.63 and 13.82 µM, respectively. From the results, it could be concluded that the antimalarial activity of calix[4]-2-methylresorcinarenes was influenced by the type of substituent of aromatic rings at the para position.