Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : Journal of Statistics and Data Science

Forecasting A Weekly Red Chilli Price in Bengkulu City Using Autoregressive Integrated Moving Average (ARIMA) and Singular Spectrum Analysis (SSA) Methods Putriasari, Novi; Nugroho, Sigit; Rachmawati, Ramya; Agwil, Winalia; Sitohang, Yosep O
Journal of Statistics and Data Science Vol. 1 No. 1 (2022)
Publisher : UNIB Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33369/jsds.v1i1.21007

Abstract

Red chili occupies a strategic position in the Indonesian economic structure because its use applies to almost all Indonesian dishes. Therefore, controlling the price of red chili is anecessity to maintain national economic stability. The purpose of this research is to forecast a red chili weekly price using ARIMA and SSA based on the weekly data of chili prices from January 2016 - December 2019 sourced from Statistics Indonseia (BPS) Branch Office of Bengkulu Province. The data have been analyzed using software R. Based on MAPE, ARIMA (2,1,2) provides the best forecasting with value 0.49% while SSA 10.64%.
Sentiment Analysis of Twitter User’s Perceptions of the Campus Merdeka Using Naïve Bayes Classifier and Support Vector Machine Methods Salsabilla, Intan; Alwansyah, Muhammad Arib; Nugroho, Sigit; Agwil, Winalia
Journal of Statistics and Data Science Vol. 2 No. 2 (2023)
Publisher : UNIB Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33369/jsds.v2i2.30577

Abstract

The Campus Merdeka program is being implemented by the government to realize autonomous and flexible learning in tertiary institutions to create a learning culture that is innovative, not restrictive, and the needs of students. The Campus Merdeka provides added value and is attractive and provides various responses from the public both directly and on different social media platforms. One of the social media platforms is Twitter. Therefore, research was conducted on the community's response to the Campus Merdeka program on Twitter social media. Twitter documents in the form of community response tweets to the Campus Merdeka program are classified into two categories, namely positive responses and negative responses. The method used in this study is the Naïve Bayes Classifier (NBC) and Support Vector Machine (SVM) with a Polynomial Degree 2 kernel. The highest level of accuracy resulting from this research is 73.5% with a parameter value of  of 0.5, a constant value  is 0.5, with training data of 309 documents for training data and 132 documents for test data. The accuracy results obtained for the Naïve Bayes Classifier method are 65.9% and for the Support Vector Machine method, an accuracy is 73.5%.
Forecasting A Weekly Red Chilli Price in Bengkulu City Using Autoregressive Integrated Moving Average (ARIMA) and Singular Spectrum Analysis (SSA) Methods Putriasari, Novi; Nugroho, Sigit; Rachmawati, Ramya; Agwil, Winalia; Sitohang, Yosep O
Journal of Statistics and Data Science Vol. 1 No. 1 (2022)
Publisher : UNIB Press

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Red chili occupies a strategic position in the Indonesian economic structure because its use applies to almost all Indonesian dishes. Therefore, controlling the price of red chili is a necessity to maintain national economic stability. The purpose of this research is to forecast a red chili weekly price using ARIMA and SSA based on the weekly data of chili prices from January 2016 - December 2019 sourced from Statistics Indonseia (BPS) Branch Office of Bengkulu Province. The data have been analyzed using software R. Based on MAPE, ARIMA K (2,1,2) provides the best forecasting with value 0.49% while SSA 10.64%.