Claim Missing Document
Check
Articles

Found 22 Documents
Search

SISTEM ANTRIAN BENGKEL MOTOR PUTUT MOTOR DESA PEPELEGI WARU SIDOARJO Tianto, Reza; Susila, Muktar Redy
Jurnal KeDayMas: Kemitraan dan Pemberdayaan Masyarakat Vol. 4 No. 1 (2024): Vol 4, No 1 (2024) : Januari 2024
Publisher : Research Center and Community Services (PPPM) Universitas Hayam Wuruk "Perbanas" Surabaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14414/kedaymas.v4i1.4648

Abstract

Para pelaku Usaha Mikro, Kecil, dan Menengah (UMKM) di Indonesia semakin meningkat jumlahnya. Perkembangan UMKM di Indonesia terus meningkat dari segi kualitasnya, hal ini dikarenakan dukungan kuat dari pemerintah dalam pengembangan yang dilakukan kepada para pelaku UMKM, yang mana hal tersebut sangat penting dalam mengantisipasi kondisi perekonomian ke depan serta menjaga dan memperkuat struktur perekonomian nasional. Salah satu bentuk UMKM adalah usaha bergerak dibidang jasa perbaikan sepeda motor atau Bengkel sepeda motor. Dengan berkembangan bisnis Putut Motor semakin banyak pelanggan yang datang. Produk jasa yang dilayani putut motormulai perbaikan ringan, menengah dan berat. Agar tidak terjadi penumpukan pekerjaan maka Metode yang digunakan yaitu mengklasifikasi jenis layanan dengan metode LIFO untuk perbaikan Ringan, FIFO untuk Perbaikan LIFO. Sistim Antrian menggunakan Dua Channel, Multi Server
The Comparison of Classical and Bayesian Bivariate Binary Logistic Regression Prediction for Unbalanced Response (Case Study: Customers of Antivirus Software 'X' Company) Susila, Muktar Redy; Kuswanto, Heri; Fithriasari, Kartika
Proceeding ISETH (International Summit on Science, Technology, and Humanity) 2015: Proceeding ISETH (International Conference on Science, Technology, and Humanity)
Publisher : Universitas Muhammadiyah Surakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23917/iseth.2394

Abstract

The purpose of this study was to compare the performance of classical bivariate binary logistic regression and Bayesian bivariate binary logistic regression. The sizes of sample used in research were small and large sample. The size of the small sample was 200 and the large sample was 10000 samples. Parameter estimation method that often used in logistic regression modeling is maximum likelihood which is called the classical approach. However, using a maximum likelihood parameter estimation has several weaknesses. When the number of sample is small and the dependent variable is unbalanced, bias parameters are frequently obtained. Nevertheless, when the sample size is too large, it has propensity to reject H0. As the solution, the use of Bayesian approach to overcome the small sample size problem and unbalanced dependent variable is suggested. The case study carried out in this research was customer loyalty of 'X' Company. This study used two dependent variables, i.e. Customer Defections and Contract Answer. Initial information on the number of consumers who defected and not defected was unbalanced, likewise for the Contract Answers. Based on the comparison of classical and Bayesian bivariate binary logistic regression prediction, Bayesian method was evidenced to yield better performance compared to classical method.