Claim Missing Document
Check
Articles

Found 5 Documents
Search

Studi Peningkatan Keandalan Dengan Penambahan Recloser Pada Penyulang Pajalau Pt. Pln (Persero) Ulp Kalebajeng Dengan Metode Section Technique sofyan, sofyan; Achmad, Alamsyah; Amal S P, Ikhlashul
Jurnal Teknologi Elekterika Vol. 19 No. 2 (2022): Nopember
Publisher : Jurusan Teknik Elektro Politeknik Negeri Ujung Pandang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31963/elekterika.v6i2.3688

Abstract

Keandalan penyaluran energi listrik ke konsumen sangat dipengaruhi oleh sistem pendistribusiannya. Untuk itu diperlukan sistem distribusi energi listrik dengan keandalan yang tinggi. Karena manfaat dan fungsi suatu sistem tenaga listrik yang sangat vital dalam kehidupan sehari-hari, maka diperlukan sebuah sistem tenaga listrik yang andal untuk penyediaan dan pendistribusian tenaga listrik pada jaringan distribusi tenaga listrik. Tujuan penelitian ini adalah untuk menghitung tingkat keandalan dan sekaligus melakukan upaya untuk meningkatkan keandalan  sistem distribusi 20 kV pada PT. PLN (Persero) ULP Kalebajeng dengan metode section technique, di mana nilai dari indeks kegagalan dari setiap peralatan utama sistem distribusi diperhitungkan untuk mencari nilai indeks keandalan sistem secara menyeluruh. Studi kasus dilakukan di PT. PLN (persero) ULP Kalebajeng. Pada tugas akhir ini, dilakukan studi peningkatan keandalan sistem distribusi 20 kV pada Penyulang. Tujuan yang ingin dicapai pada tugas akhir ini adalah sebagai evaluasi dalam memperbaiki kinerja peralatan yang ada pada Penyulang Pajalau. Metode yang digunakan antara lain pengumpulan data, pengolahan data, serta penganalisisan keandalan sistem distribusi 20 kV. Nilai indeks keandalan penyulang Pajalau yaitu SAIDI 22.348 jam/tahun dan SAIFI 4.494 kali/tahun. Hasil perhitungan dengan metode Section Technique nantinya akan dibandingkan dengan hasil dari simulasi ETAP setelah mengimplementasikan recloser pada penyulang
Design and Development of Solar Pump System for Automatic Watering of Shallots Muh. Ilham; Yuliana; Idris, Ahmad Rosyid; Usman; Achmad, Alamsyah
Jurnal Teknologi Elekterika Vol. 21 No. 2 (2024)
Publisher : Jurusan Teknik Elektro Politeknik Negeri Ujung Pandang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31963/elekterika.v21i2.5117

Abstract

Agriculture is a key sector of the Indonesian economy, with shallots being one of the most important commodities. However, limited access to electricity in rural areas is often a barrier to the implementation of efficient irrigation systems. This research focuses on developing an automatic shallot irrigation system using a solar pump. The system is designed by using solar panels to convert solar energy into electricity to power the water pump. They use an Arduino-based control system integrated with a real-time clock (RTC) to automatically set the watering schedule so that plants can be watered at the right time without human intervention. Tests were conducted on 96 m² of land to evaluate the performance of the automation system, energy efficiency, and system performance under actual operating conditions. The testing results show that the system can operate efficiently, with the solar panel generating enough energy to power the pump and maintain watering continuity. The system can reduce dependence on conventional electricity, providing a sustainable and environmentally friendly irrigation solution. As such, the system provides an effective solution for agricultural systems in areas with limited access to electricity, while supporting the use of renewable energy.
On-Grid PV Performance in Various Irradiation Conditions, Types, and Load Power Achmad, Alamsyah; Usman, Usman; Sultan, Ahmad Rizal; Idris, Ahmad Rosyid; Asri, Andarini; Ryadin, Fahmi
PROtek : Jurnal Ilmiah Teknik Elektro Vol 10, No 1 (2023): Protek : Jurnal Ilmiah Teknik Elektro
Publisher : Program Studi Teknik Elektro Universitas Khairun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/protk.v10i1.5543

Abstract

There are several types of photovoltaic system configurations, one of which is the on-grid PV system. This system is simple compared to other systems. Because there are two different energy sources that can supply the load either together or separately, an analysis of how the irradiation affects the electrical parameters on the load side or the grid itself is required. The goal of this research is to examine the performance of on-grid PV under various irradiation variation, type, and load power to power factor, grid frequency, and load conditions. To measure the performance of on-grid PV, parameter calculations are carried out in the form of PV efficiency, final yield, reference yield, and performance ratio, and the results of measurements of power factor, grid frequency, and load are observed due to variations in irradiation, type, and load power. The results show that the performance of on-grid PV is good; low irradiation can result in a decrease in the grid power factor, while the grid and load frequencies are in normal conditions for various variations of irradiation, type, and load power.
Grey Wolf Optimizer-Neural Network Model for Indonesia Electricity Demand Prediction: Multi-Scenario Analysis and Performance Evaluation 2026-2034 Sofyan, Sofyan; Usman, Usman; Achmad, Alamsyah; Hadi Sirad, Mochammad Apriyadi; Fudholi, Ahmad; Sapari, Norazliani MD
PROtek : Jurnal Ilmiah Teknik Elektro Vol 12, No 3 (2025): Protek : Jurnal Ilmiah Teknik Elektro
Publisher : Program Studi Teknik Elektro Universitas Khairun

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.33387/protk.v12i3.10398

Abstract

Indonesia's rapid economic development and energy transition goals necessitate accurate long-term electricity demand forecasting to ensure supply security while optimizing infrastructure investments. This study addresses critical gaps in existing forecasting methodologies by developing a hybrid Grey Wolf Optimizer-Neural Network (GWO-NN) model specifically designed for emerging economy characteristics. While recent deep learning approaches (LSTM, CNN-LSTM) show promise for short-term forecasting, they often fail in long-term predictions due to limited adaptability to economic volatility and infrastructure constraints typical in developing nations. Our GWO-NN framework overcomes these limitations through intelligent hyperparameter optimization and multi-scenario modeling that captures Indonesia's unique socio-economic dynamics. The model incorporates 15 years of historical data (2010-2025) across seven key variables: GDP growth, population dynamics, temperature variations, industrial activity, urbanization rates, energy efficiency, and electrification progress. Rigorous validation against PLN's official projections reveals superior performance: Conservative scenario achieves exceptional 3.9% average absolute difference, Moderate scenario 19.0%, demonstrating significant improvement over traditional ARIMA models (35% error) and recent CNN-LSTM approaches (25% error). The 2034 demand projections range from 377.0 TWh (Conservative) to 546.1 TWh (Optimistic), providing policymakers with robust planning envelopes. This research contributes methodologically through hybrid metaheuristic optimization and practically through evidence-based planning support for Indonesia's renewable energy transition and carbon neutrality targets by 2060.
Rancang Bangun Sistem Kendali dan Monitoring Udara Ambien Pada Ruang Cell Kubikel 20 kV Berbasis IoT Iskandar, Muh. Ali; Purwito, Purwito; Achmad, Alamsyah
Jurnal Sosial Teknologi Vol. 5 No. 5 (2025): Jurnal Sosial dan Teknologi
Publisher : CV. Green Publisher Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59188/jurnalsostech.v5i5.32132

Abstract

Kubikel 20 kV berinsulasi udara (Air Insulated) rentan mengalami gangguan akibat suhu rendah dan kelembaban tinggi yang dapat memicu kondensasi dan berujung pada fenomena korona. Penelitian ini bertujuan untuk merancang dan menguji sistem kendali dan monitoring udara ambien berbasis Internet of Things (IoT) untuk menjaga kondisi ideal ruang cell kubikel 20 kV. Sistem yang dirancang memanfaatkan mikrokontroler NodeMCU ESP32, sensor DHT11 dan DHT22 untuk mengukur suhu dan kelembaban, serta relay dua kanal untuk mengontrol kipas dan heater yang terhubung dengan sumber tegangan AC 220V dan DC 12V. Data lingkungan dikirim dan disimpan otomatis ke dalam web server setiap 30 menit. Metode penelitian mencakup tahap persiapan alat, perancangan perangkat keras dan lunak, serta pengujian alat di Laboratorium Politeknik Negeri Ujung Pandang pada kubikel yang tidak beroperasi. Hasil menunjukkan bahwa alat mampu merespons perubahan kelembaban dan suhu dengan mengaktifkan kipas dan heater secara otomatis. Data pengujian menunjukkan bahwa suhu dan kelembaban dalam ruang cell lebih tinggi daripada suhu ruang luar, dengan nilai kelembaban tertinggi mencapai 94% yang memicu kerja kipas dan heater secara bersamaan. Penelitian ini memberikan kontribusi pada pemeliharaan preventif terhadap potensi korona serta sebagai media pembelajaran praktis berbasis IoT. Implikasinya, sistem ini dapat dikembangkan lebih lanjut untuk pemantauan jarak jauh dan integrasi energi terbarukan guna mendukung efisiensi operasional.