Claim Missing Document
Check
Articles

Found 10 Documents
Search

DESAIN SAMBUNGAN YANG TERINSPIRASI DARI KULIT ARMADILLO UNTUK MENINGKATKAN DEFORMASI Abdiyar, Muhammad Albin; Cahyono, Yanuar Reza Trie; Ramadhan, Rafli Adi; Perdana, Muhamad Rayhan Rizky; Prasetya, Riduwan; Andoko, Andoko
TURBO [Tulisan Riset Berbasis Online] Vol 13, No 1 (2024): TURBO : Jurnal Program Studi Teknik Mesin
Publisher : Universitas Muhammadiyah Metro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24127/trb.v13i1.3100

Abstract

Bio-inspired merupakan prinsip-prinsip desain alam dalam membangun model rekayasa untuk memecahkan tantangan pada bidang teknik, khususnya sambungan. Sambungan merupakan beberapa elemen atau struktur yang digabungkan dengan metode khusus. Salah satu jenis sambungan yaitu compliant joint, sambungan ini merupakan jenis sambungan yang memerlukan tingkat deformasi yang tinggi sesuai dengan penggunaanya. Nilai deformasi pada sambungan compliant joint dapat ditingkatkan dengan menerapkan konsep bio-inspired. Bio-inspired yang dipilih adalah pola celah kosong pada kulit armadillo, pola celah kulit armadillo diterapkan pada sambungan (compliant joint) dipermukaan yang melengkung bertujuan meningkatkan jangkauan perpindahan (deformasi). Metode pengambilan data dilakukan dengan memvariasikan dimensi pola yang terinspirasi kulit armadillo serta dimensi geometri sambungan untuk mendapatkan nilai deformasi yang tinggi namun tetap berada di batas elastis material. Simulasi dilakukan menggunakan software ANSYS 2023 R2 untuk mengetahui pengaruh lebar pola, panjang pola, serta ketebalan sambungan terhadap nilai total deformation dan maximum stress. Berdasarkan hasil simulasi desain dengan hasil total deformation paling tinggi adalah desain 12 pada variasi tebal 2 mm, lebar 0,65 mm dan tinggi pola 11,53 mm dengan nilai total deformation sebesar 11,1630 mm dan nilai maximum stress sebesar 13,8380 MPa. Simulasi ini berhasil memperbaiki nilai total deformation pada desain sehingga mendapatkan desain sambungan yang paling optimal.
Simulation of the Performance of Kevlar Impregnated Shear Thickening Fluid Ballistic Test Results (STF) Ballistic Test Results Prasetya, Riduwan; Andoko, Andoko; Suprayitno, Suprayitno; Wulandari, Retno; Trihutomo, Prihanto; Mishima, Kenji; Janas, Dawid
Journal of Mechanical Engineering Science and Technology (JMEST) Vol 8, No 1 (2024)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um016v8i12024p054

Abstract

This study explores the enhancement of Kevlar fabric’s ballistic performance through impregnation with Shear Thickening Fluid (STF) for potential application in soft body armor. The experimental approach often fails to elucidate mechanical phenomena critical for the development of lightweight and high-strength body armor designs. To address this limitation, the finite element method, specifically using ANSYS/LS-DYNA R.13, was employed for a comprehensive analysis. The simulation aimed to evaluate the impact of STF on Kevlar fabric by assessing projectile velocity, force exerted by the projectile onto the fabric, displacement, stress distribution, and fabric failure mechanisms. Kevlar yarn was modeled as a shell element formed into fabric with a sine wave profile, investigating two types of STF: SiO2-PEG200 (S0) and SiO2-PEG200-B4C (S1), differing in maximum viscosities. The addition of STF resulted in increased coefficients of friction on Kevlar, with the highest values observed for the SiO2-PEG200-B4C impregnated fabric (  =0.87 and =0.82). The incorporation of the second STF type (S1) significantly reduced the projectile’s velocity from an initial 200 m/s to 153.2 m/s upon impact. Additionally, the force on the S1 fabric surged to 121,556 N, a threefold increase compared to neat Kevlar. STF's influence was further evidenced by enhanced fabric displacement and more uniform stress distribution upon ballistic impact. The fabric's thickening upon failure indicated STF's ability to enlarge the deformation area, facilitating uniform distribution of ballistic kinetic energy across the impact zone. Notably, the fabric impregnated with the second type of STF, featuring boron carbide (S1), demonstrated superior ballistic performance. This study concludes that STF-impregnated Kevlar fabric, particularly the SiO2-PEG200-B4C variant, not only surpasses the ballistic performance of neat Kevlar but also meets the criteria for NIJ Level IIIA standards, highlighting its potential as a highly effective material for advanced soft body armor designs.
IMPLEMENTASI MESIN PENCACAH RUMPUT UNTUK PETERNAKAN SAPI DI DESA MULYOREJO, KECAMATAN NGANTANG Andoko, Andoko; Prasetya, Riduwan; Pasha, Muhammad Faizullah; Darmawan, Muhammad Wahid; Puspitasari, Poppy; Lubis, Didin Zakariya
Jurnal Pengabdian Pendidikan dan Teknologi (JP2T) Vol 4, No 2 (2023)
Publisher : Universitas Negeri Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17977/um080v4i22023p75-80

Abstract

Peternakan sapi merupakan sektor yang paling potensial di Desa Mulyorejo, Kecamatan Ngantang, Kabupaten Malang. Sapi perah merupakan jenis sapi yang paling banyak diternak yang menghasilkan susu. Permasalahan peternak di Desa ini adalah rendahnya produktivitas susu karena manajemen pakan yang kurang terkontrol dan sisa pakan yang terlalu banyak yang menjadi limbah. Pengabdian ini bertujuan untuk mengatasi permasalahan ini melaui implementasi mesin pencacah rumput. Kegiatan penelitian meliputi analisis permasalahan mitra, desain dan manufaktur mesin, implementasi ke mitra, dan evaluasi. Mesin pencacah rumput dapat mencacah hingga kapasitas 177 kg/jam pada kecepatan 1800 rpm. Berdasarkan hasil evaluasi pada implementasi mesin pencacah rumput diperoleh hasil bahwa sisa pakan berkurang dan produktivitas susu meningkat. Sehingga, implementasi mesin pencacah rumput bagi mitra efektif, tepat sasaran, dan solutif.
Effect of Electrodeposition Time on the Growth Rate of Carbon Nanotubes (CNTs) Faishol, Faishol; Andoko, Andoko; Suryanto, Heru; Prasetya, Riduwan
TRANSMISI Vol. 20 No. 2 (2024): September (2024)
Publisher : Universitas Merdeka Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26905/jtmt.v20i2.13672

Abstract

Carbon Nanotubes (CNTs) are nano-sized carbon that resembles tubes and has the potential to be used in various aspects of applications. Some of  the CNT carbon capture  methods include arc discharge, lasser ablation, CVD and electrodeposition. The advantage of the electrodeposition method is that the production cost is cheap and the preparation is easy. Electrodeposition is the precipitation of substances by using a direct electric current, with CO2 as the reactant. Factors that affect the growth rate of CNT are voltage, temperature, carbon source, electrode and time. The variation of the electorative time used was 60 minutes, 90 minutes, 120 minutes, 150 minutes, 180 minutes. The data collection process begins by shaping and measuring the weight of the electrode (Ni) with a diameter of 2 cm CNT deposition area. measuring the weight and melting Li2CO3 at a temperature of 750. then the CO2 flow rate setting, voltage setting  5V and time setting were then characterized by SEM-EDX and XRD. The results of the study showed that the optimal time obtained with a time of 120 minutes, the resulting CNT deposition rate was 1,618 g cm-2 h-1. Then based on the characterization of XRD and SEM, it shows that the longer the electrodeposition time, the less impurities are contained in the results obtained.
Optimization of preparation parameters of palm oil-based nanofuel with multi wall carbon nanotube (MWCNT) for stability using Taguchi-grey relation analysis (GRA) combination Nauri, Imam Muda; Andoko, Andoko; Prasetya, Riduwan; Pasha, Muhammad Faizullah; Akbar, Muhamad Rizky; Darmawan, Muhammad Wahid; Puspitasari, Poppy
Mechanical Engineering for Society and Industry Vol 4 No 2 (2024)
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.11945

Abstract

This research optimizes the preparation parameters of palm oil-based nanofuel and Multi Wall Carbon Nanotube (MWCNT) to produce stable nanofuel. The parameters optimized include stirrer speed, sonication time, sonication power, and surfactant ratio, with stability measured through absorbance and sedimentation ratio (SR). The Taguchi method, using an L9 orthogonal array designed with minitab 19.0 software, was employed for single-objective optimization, while Grey Relation Analysis (GRA) is applied for multi-objective optimization. Experimental results show that the optimal conditions for absorbance are stirrer speed of 1000 rpm, sonication time of 30 minutes, sonication power of 200 watts, and surfactant ratio of 1, whereas for sedimentation ratio the optimal conditions are stirrer speed of 1000 rpm, sonication time of 30 minutes, sonication power of 150 watts, and surfactant ratio of 1. ANOVA analysis reveals that surfactant concentration contributes the most to nanofuel stability, with contributions of 79.63% for absorbance and 82.60% for sedimentation ratio. Multi-objective GRA optimization results also show that surfactant concentration is the most dominant factor, contributing 71.5% to the Grey Relational Grade (GRG). The consistency of optimal parameters yielded by both Taguchi and GRA methods reinforces the validity and consistency of this study's results. This research provides a strong foundation for the development of more stable nanofuels, potentially enhancing energy efficiency and sustainability. These findings offer practical guidelines for real-world applications and make significant contributions to nanofuel technology
Overview of anodization and silver coating for titanium alloys: Process parameters and biomedical insights Andoko, Andoko; Khoyroh, Syafira Bilqis; Aminnudin, Aminnudin; Prasetya, Riduwan
Mechanical Engineering for Society and Industry Vol 4 No 3 (2024): Special Issue on Technology Update 2024
Publisher : Universitas Muhammadiyah Magelang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/mesi.11986

Abstract

Anodization is a critical electrochemical process for producing titanium oxide layers with varying characteristics, significantly influencing the physicochemical properties, biocompatibility, and performance of bone implants. This study systematically reviews the current state of research on the effects of anodization parameters and silver coatings on the morphology, functional groups, and phase identification of Ti-6Al-4V bone implants. By synthesizing findings from 18 relevant studies selected from 1044 screened articles (2000–2023), this review provides a comprehensive framework for understanding the role of anodization and silver coating in improving implant performance. The review highlights how variations in anodization parameters—such as electrolyte composition, voltage, and duration—significantly impact critical implant properties, including corrosion resistance, antimicrobial efficacy, and biocompatibility. Additionally, silver coatings are underscored for their antimicrobial benefits and ability to address challenges such as bacterial adhesion and biofilm formation. Beyond functional improvements, this review identifies gaps in the literature, such as the limited exploration of process optimization and the environmental implications of implant fabrication, offering actionable insights for future research. The novelty of this article lies in its holistic synthesis of fragmented findings, bridging material science, biomedical functionality, and sustainability. It provides a structured evaluation of key process parameters and their influence on implant performance, emphasizing the need for balanced approaches that integrate clinical effectiveness with environmentally responsible practices. By offering a unified perspective, this review serves as a valuable reference for advancing both research and practical applications in the development of high-performance bone implants.
Effect of Temperature on the Growth Rate of Carbon Nanotubes (CNTs) using Electrodeposition Method Prabowo, Agung; Andoko, Andoko; Suryanto, Heru; Prasetya, Riduwan
TRANSMISI Vol. 20 No. 2 (2024): September (2024)
Publisher : Universitas Merdeka Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26905/jtmt.v20i2.13673

Abstract

Electrodeposition is one of the carbon capture methods used to produce carbon nanotubes with temperature as one of the variable. The research aims to analyze the effect of temperature on the growth rate of carbon nanotubes of 723oC, 750oC, 800oC, 850oC and 900oC using X-Ray Diffraction (XRD) testing. Analyzing deposit morphology at the same temperature using Scanning Electron Microscope (SEM) testing. The results of research show that the most optimal growth rate for carbon nanotubes occurred at 750oC of 7,949 g cm-2 hours-1. At a temperature of 750oC, carbon deposits are easier than at 723oC because that’s the melting point of lithium carbonate and has not completely decomposed. The XRD test show that at 750oC is the highest peak at 2θ= 26.21o. The SEM test show that the optimal morphological structure formed occurs at a temperature variation of 750oC with a fibrous morphology and little impurity at the ends. The results of the CNT percentage using the Material Analysis Using Diffraction (MAUD) method show that the largest quantitative value of the CNT percentage occurs at a temperature of 800oC of 4.08%.
The Effect of Feed Rate Variation and Cooling on the Drilling Process of Carbon Fiber and Glass Fiber Composites Reyhan, Rhesa Rama; Andoko , Andoko; Prasetya, Riduwan
Journal of Applied Science, Engineering, Technology, and Education Vol. 6 No. 2 (2024)
Publisher : PT Mattawang Mediatama Solution

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35877/454RI.asci3471

Abstract

Carbon Fiber Reinforced Polymer (CFRP) and Glass Fiber Reinforced Polymer (GFRP) composites have extensive applications in the automotive, aerospace, and manufacturing industries due to their high strength and lightweight properties. However, machining processes such as drilling often encounter challenges such as delamination and tool wear due to the anisotropic nature and low thermal conductivity of these materials. This study evaluates the effect of varying feed rates and cooling methods on drilling quality and delamination levels in CFRP and GFRP composites. The cooling methods tested include dry, nanofluid, and cryogenic cooling. Experimental results indicate that cryogenic cooling produces the best hole quality with the lowest delamination levels, even at high feed rates. These findings provide valuable insights into the interaction between machining parameters and cooling methods, offering solutions to enhance the efficiency and quality of composite drilling processes in the manufacturing industry
Effect of Defect Geometry and Strain Rate on Mechanoelectrochemical Behavior of X100 Steel Pipelines Syah, Muhammad Zacky; Andoko, Andoko; Prasetya, Riduwan
International Journal of Recent Technology and Applied Science (IJORTAS) Vol 7 No 1: March 2025
Publisher : Lamintang Education and Training Centre, in collaboration with the International Association of Educators, Scientists, Technologists, and Engineers (IA-ESTE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36079/lamintang.ijortas-0701.787

Abstract

Corrosion and mechanical issues in high-strength X100 steel pipelines present major difficulties for the safety and dependability of energy transport systems. This research investigates the joint impacts of defect shape and strain rate on stress distribution as well as electrochemical behavior through COMSOL Multiphysics simulations. Findings show that defects with elevated aspect ratios generate intense stress gradients, resulting in focused plastic deformation and the onset of cracks. Additionally, higher strain rates worsen stress concentration and speed up anodic and cathodic reactions, amplifying hydrogen embrittlement and the deterioration of materials. As time passes, the redistribution of stress due to degradation leads to structural instability and increases the likelihood of failure. These results highlight the significance of combining mechanical and electrochemical analyses to gain a deeper insight into degradation mechanisms. This research offers important perspectives for enhancing defect surveillance, refining cathodic protection methods, and guaranteeing the enduring reliability of pipelines in dynamic and corrosive settings.
DESAIN SAMBUNGAN YANG TERINSPIRASI DARI KULIT ARMADILLO UNTUK MENINGKATKAN DEFORMASI Abdiyar, Muhammad Albin; Cahyono, Yanuar Reza Trie; Ramadhan, Rafli Adi; Perdana, Muhamad Rayhan Rizky; Prasetya, Riduwan; Andoko, Andoko
TURBO [Tulisan Riset Berbasis Online] Vol 13, No 1 (2024): TURBO : Jurnal Program Studi Teknik Mesin
Publisher : Universitas Muhammadiyah Metro

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24127/trb.v13i1.3100

Abstract

Bio-inspired merupakan prinsip-prinsip desain alam dalam membangun model rekayasa untuk memecahkan tantangan pada bidang teknik, khususnya sambungan. Sambungan merupakan beberapa elemen atau struktur yang digabungkan dengan metode khusus. Salah satu jenis sambungan yaitu compliant joint, sambungan ini merupakan jenis sambungan yang memerlukan tingkat deformasi yang tinggi sesuai dengan penggunaanya. Nilai deformasi pada sambungan compliant joint dapat ditingkatkan dengan menerapkan konsep bio-inspired. Bio-inspired yang dipilih adalah pola celah kosong pada kulit armadillo, pola celah kulit armadillo diterapkan pada sambungan (compliant joint) dipermukaan yang melengkung bertujuan meningkatkan jangkauan perpindahan (deformasi). Metode pengambilan data dilakukan dengan memvariasikan dimensi pola yang terinspirasi kulit armadillo serta dimensi geometri sambungan untuk mendapatkan nilai deformasi yang tinggi namun tetap berada di batas elastis material. Simulasi dilakukan menggunakan software ANSYS 2023 R2 untuk mengetahui pengaruh lebar pola, panjang pola, serta ketebalan sambungan terhadap nilai total deformation dan maximum stress. Berdasarkan hasil simulasi desain dengan hasil total deformation paling tinggi adalah desain 12 pada variasi tebal 2 mm, lebar 0,65 mm dan tinggi pola 11,53 mm dengan nilai total deformation sebesar 11,1630 mm dan nilai maximum stress sebesar 13,8380 MPa. Simulasi ini berhasil memperbaiki nilai total deformation pada desain sehingga mendapatkan desain sambungan yang paling optimal.