Claim Missing Document
Check
Articles

Found 2 Documents
Search

Passive magnetic coil design for electromagnetic interference evaluation of axle counters Yoppy, Yoppy; Yudhistira, Yudhistira; Nugroho, Hutomo Wahyu; Trivida, Elvina; Wahyu Wijanarko, Tyas Ari; Bakti, Aditia Nur; Mandaris, Dwi
International Journal of Electrical and Computer Engineering (IJECE) Vol 14, No 1: February 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v14i1.pp166-174

Abstract

Measurement of magnetic fields near the railway tracks is crucial to ensure compatibility with the operation of axle counters. According to EN 50592 standard, the magnetic field is detected with a passive magnetic coil and an oscilloscope. From previous studies, in general, there has been no in-depth analysis of how the choice of coil winding parameters could affect the coil output voltage, which then affect the measurement sensitivity, in particular the coil design based on the standard and it is applicability for electromagnetic interference (EMI) evaluation of axle counters. Therefore, this paper will explore the design of a passive magnetic coil to obtain the optimum coil output voltage within the frequency range. Simulations showed that for 10-100 kHz and 100 kHz–1.3 MHz range, the optimum number of turns happened at 60-100 and 15-60 turns, respectively. Based on that, two example coils had been built. Simulations and measurements of their frequency response were in good agreement, with a deviation less than 1.0 dB.
Electromagnetic interference risk from electrostatic discharge in infant incubators Trivida, Elvina; Sudrajat, Muhammad Imam; Ardiatna, Wuwus; Prananto, Haryo Dwi; Nugroho, Hutomo Wahyu; Yoppy, Yoppy; Anam, Mohamad Khoirul; Bakti, Aditia Nur; Mandaris, Dwi; Arjadi, R Harry
Bulletin of Electrical Engineering and Informatics Vol 14, No 2: April 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v14i2.8882

Abstract

This paper proposes an improved electromagnetic compatibility (EMC) risk analysis approach for medical equipment related to the effect of electrostatic discharge (ESD). This approach not only focuses on the risk of ESD from the susceptibility aspect but also investigates its conducted electromagnetic interference (EMI) characteristics. This study combines the standardized ESD test and conducted emission (CE) measurement simultaneously, applying it to the infant incubator and analyzing the spectrum of ESD current in the phase line in the time and frequency domain. The result shows that an ESD exposure caused current spikes with an average level of 13.8 A. Moreover, it also causes a broad spectral CE noise on the phase line of the infant incubator. Furthermore, the CE noise in the low-frequency range was also detected on the phase line during ESD exposure, indicating the risk of interference with other sensitive medical equipment connected to the same power network. The approach of proposed risk analysis in this study can be used to identify the risks of EMI due to ESD events in implementing the latest IEC 60601-1-2.