p-Index From 2021 - 2026
5.301
P-Index
This Author published in this journals
All Journal Jurnal Teknologi Informasi dan Ilmu Komputer Jurnal Informatika dan Teknik Elektro Terapan Journal of Information Technology and Computer Science Knowledge Engineering and Data Science JOURNAL OF APPLIED INFORMATICS AND COMPUTING TEKTRIKA - Jurnal Penelitian dan Pengembangan Telekomunikasi, Kendali, Komputer, Elektrik, dan Elektronika Jurnal Ilmu Komputer dan Desain Komunikasi Visual Jurnal Mnemonic JATI (Jurnal Mahasiswa Teknik Informatika) CICES (Cyberpreneurship Innovative and Creative Exact and Social Science) Jurnal Sistem Komputer dan Informatika (JSON) Community Development Journal: Jurnal Pengabdian Masyarakat Jurnal Teknologi Informatika dan Komputer Jurasik (Jurnal Riset Sistem Informasi dan Teknik Informatika) Jurnal Teknik Informatika (JUTIF) Jurnal Restikom : Riset Teknik Informatika dan Komputer Nusantara Hasana Journal Jurnal Informatika Terpadu Jurnal Janitra Informatika dan Sistem Informasi International Journal Software Engineering and Computer Science (IJSECS) Jurnal Sistem Informasi Triguna Dharma (JURSI TGD) Jurnal Pengabdian Masyarakat Bhinneka Prosiding Seminar Nasional Pengabdian Kepada Masyarakat ROUTERS: Jurnal Sistem dan Teknologi Informasi Journal of World Future Medicine, Health and Nursing The Journal of Enhanced Studies in Informatics and Computer Applications Proceeding International Conference Of Innovation Science, Technology, Education, Children And Health Proceeding International Conference Of Innovation Science, Technology, Education, Children And Health
Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : The Journal of Enhanced Studies in Informatics and Computer Applications

Logistic Regression's Effectiveness in Feature Selection with Information Gain in Predicting Heart Failure Patients Mochammad Anshori; M. Syauqi Haris; Arif Wahyudi
Journal of Enhanced Studies in Informatics and Computer Applications Vol. 1 No. 2 (2024): JESICA Vol. 1 No. 2 2024
Publisher : Institut Teknologi, Sains, dan Kesehatan RS.DR. Soepraoen Kesdam V/BRW

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47794/jesica.v1i2.8

Abstract

Heart failure is a chronic illness that obstructs blood flow, which is necessary for the body to circulate oxygen. Patients with heart failure have a poor chance of survival, as evidenced by the high death rate. The hospital's infrastructure and medical facilities determine the degree of patient safety, and the patients' medical records play a significant role in ensuring that they receive the right care. As a result, a system that uses specific data to forecast the safety of heart failure patients is required. Machine learning, a computer-based approach, is one way to get around this. The logistic regression algorithm has been used to generate predictions in earlier studies. The approach for feature selection from the dataset that is suggested in this study is information gain. You can filter features that are significant to the dataset in this way. In addition, selection can enhance machine learning efficacy by decreasing the dimensions of the data. Five features—time, serum creatinine, ejection fraction, age, and serum sodium—are the outcome of information gain. After that, predictions were made using logistic regression, and a data sharing ratio of 70% training data and 30% test data resulted in an accuracy of 0.8556. This demonstrates how feature selection with Information Gain can improve the accuracy of the logistic regression model and is a very effective method.
Design of an Inventory Information System at ITSK Soepraoen Using the Waterfall Method Nugroho Teguh Yuono; M. Syauqi Haris; Risqy Siwi Pradini
Journal of Enhanced Studies in Informatics and Computer Applications Vol. 1 No. 2 (2024): JESICA Vol. 1 No. 2 2024
Publisher : Institut Teknologi, Sains, dan Kesehatan RS.DR. Soepraoen Kesdam V/BRW

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47794/jesica.v1i2.9

Abstract

In the current digital era, the use of information technology has become an urgent need for various institutions, including educational institutions. ITSK Soepraoen has integrated information systems in several units to increase operational efficiency. However, inventory data collection is still done manually using Microsoft Excel, which has proven to be less efficient and often causes delays in data processing. This research aims to design a website-based inventory information system at ITSK Soepraoen using the Waterfall method. This system is expected to facilitate data collection and management of inventory items as well as increase accuracy, transparency and efficiency in data processing. The research method used is the Waterfall approach which consists of four stages: requirements definition, system and software design, implementation, and testing. The result of this research is a lo-fi mockup of an inventory system that is well received by users with an acceptance rate of 92.75%. This percentage is relatively high so it can be concluded that the user accepts the design that has been created and for the next stage this inventory system can be fully implemented.
THE DISCRIMINANT ANALYSIS FUNCTION WAS IMPLEMENTED TO PREDICT THE PRESENCE OF DIABETES Herry Prasetyo Wibowo; Mochammad Anshori; M. Syauqi Haris
Journal of Enhanced Studies in Informatics and Computer Applications Vol. 1 No. 2 (2024): JESICA Vol. 1 No. 2 2024
Publisher : Institut Teknologi, Sains, dan Kesehatan RS.DR. Soepraoen Kesdam V/BRW

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.47794/jesica.v1i2.10

Abstract

Diabetes is a condition blood sugar concentrations are high and there is something wrong with insulin inside the body. A hormone called insulin controls the equilibrium of blood sugar concentration in humans. Diabetes has high-risk health, such as CKD, CVD, skin disease or even blindness. The reason people suffer from diabetes is caused of bad consumption habits. Some symptoms of diabetes are frequent urination and feeling hungry too quickly. Diabetes is sometimes difficult to diagnose, which is why it is also referred to as the silent killer. A preventive way is an early prediction of diabetes disease. This is very important to do. In this study, the discriminant analysis algorithm is used along with machine learning techniques. In this study, machine learning techniques are used. Its name is discriminant analysis algorithm. Two popular versions are linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA). This method is used because it is suitable for high-dimensional data and the discriminant analysis algorithm has minimal parameters. The discriminant analysis algorithm uses few parameters and this method appropriate for high-dimensional data. We'll compare the two approaches to find a way to demonstrate their dependability. Both approaches would be contrasted. Based on the result, QDA has the best performance. QDA can produce accuracy = 93.7%, TPR = 93.7%, precision = 94.3%, recall = 93.7% and F-measure = 93.9%. FPR of QDA is the lowest one, it is 1.02%. It means QDA has a small error in making predictions. Overall, based on the result QDA is the proven and proper method for detecting diabetes disease