Claim Missing Document
Check
Articles

Found 13 Documents
Search

Analisis Prediksi Hasil Pemilu Legislatif DPR RI DKI Jakarta Tahun 2024 Menggunakan Metode Random Forest dan Gradient Boosting Effendy, Rangga Febrian; Susanto, Agung Budi; Anggai, Sajarwo
Jurnal Ilmu Komputer Vol 2 No 1 (2024): Jurnal Ilmu Komputer (Edisi Juli 2024)
Publisher : Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

In general elections, it is closely related to predictions, predictions play an important role in obtaining results in future legislative elections. Predicting general election results can be done through a series of processes to find patterns and knowledge from a set of data using data mining techniques. To get accurate prediction results in the future, a method is needed that can be used as predictive modeling. This research aims to find out the results of model testing and predictions for the 2024 DPR RI DKI Jakarta legislative election using random forest and gradient boosting methods and to find out patterns and knowledge from the prediction results themselves. Based on the model testing results, the gradient boosting method has an accuracy value of 95.8%, precision 72.2% and recall 61.9%. Meanwhile, random forest has an accuracy value of 95.4%, precision 63.6% and recall 33.3%. The pattern and knowledge from the prediction results is that the elected legislative candidates on average are in serial numbers 1 and 2, have valid votes starting from 63,529, are male and have a doctoral degree.
Pengembangan Sistem Employee Self Service (ESS) Berbasis Web Terintegrasi Dengan Kinerja Karyawan (Studi Kasus: Astrido Group) Wibowo, Satria Ardi; Susanto, Agung Budi; Anggai, Sajarwo
Jurnal Ilmu Komputer Vol 2 No 1 (2024): Jurnal Ilmu Komputer (Edisi Juli 2024)
Publisher : Universitas Pamulang

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Technological developments in the 4.0 era require humans to act effectively and efficiently. Astrido Group is a company operating in the automotive sector, especially car sales and services. The expected goal of this research is to build an information sistem that makes it easier for employees to update personal data, download attendance reports, process leave applications and approvals and obtain employee performance information. The sistem development method is Rapid Application Development (RAD) and modeled using the Unified Modeling Language (UML). Focus Group Discussion (FGD) Used as validation testing. The resulting software quality test is based on the four software quality characteristics of the ISO 9126 model, namely: functionality, reliability, usability and efficiency which are combined using the questionnaire method. The Black Box test results were 100%, which indicates the system was well received by users, while testing with Acunetix WVS was at Threat Level 2, which indicates the application being built is quite safe.
Evaluasi Performa Model Ensemble Learning dalam Deteksi Serangan Jaringan Internet of Things pada Dataset CIC-BCCC-IOT-HCRL-2019 Raharja, Yudi; Susanto, Agung Budi; Tukiyat, Tukiyat
Journal of Informatics and Electronics Engineering Vol 5 No 02 (2025): Desember 2025
Publisher : Unit Penelitian dan Pengabdian kepada Masyarakat Politeknik TEDC Bandung Jl. Pesantren Km 2 Cibabat Cimahi Utara – Cimahi 40513 Jawa Barat – Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.70428/jiee.v5i02.1454

Abstract

Perkembangan pesat perangkat Internet of Things (IoT) membawa peningkatan kompleksitas sekaligus risiko pada keamanan jaringan. Studi ini bertujuan untuk menilai performa lima algoritma Ensemble Learning, yaitu Random Forest, AdaBoost, CatBoost, XGBoost, dan LightGBM, dalam Sistem Deteksi Intrusi (IDS) pada jaringan IoT dengan menggunakan dataset CIC-BCCC-IoT-HCRL-2019. Metode penelitian melibatkan tahap pra-pemrosesan data termasuk penerapan dua teknik normalisasi yaitu MinMaxScaler dan Normalizer, serta evaluasi model menggunakan validasi silang 5-Fold Cross-Validation dan pembagian data latih dan uji dengan rasio 80:20. Hasil eksperimen menunjukkan algoritma boosting seperti XGBoost, CatBoost, dan LightGBM secara konsisten memiliki kinerja lebih baik dibandingkan dengan model bagging tradisional seperti Random Forest. XGBoost yang dikombinasikan dengan MinMaxScaler mencapai akurasi tertinggi sebesar 0,9980, sementara LightGBM dengan MinMaxScaler mencatat waktu pelatihan tercepat yakni 2,54 detik. Temuan ini mengindikasikan bahwa penggunaan teknik boosting bersama normalisasi MinMaxScaler dapat secara signifikan meningkatkan akurasi serta efisiensi IDS berbasis IoT. Kata Kunci— Internet of Things, Deteksi Intrusi, Machine Learning, Ensemble Learning, Boosting, Normalisasi Data.