Claim Missing Document
Check
Articles

Found 34 Documents
Search

Analisis Efek Augmentasi Dataset dan Fine Tune pada Algoritma Pre-Trained Convolutional Neural Network (CNN) Sasongko, Theopilus Bayu; Haryoko, Haryoko; Amrullah, Agit
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 10 No 4: Agustus 2023
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2024106583

Abstract

Kemajuan teknologi deep learning seringkali berbanding lurus dengan keterkaitan metode yang dapat diandalkan dalam penggunaan jumlah data yang besar. Convolutional Neural Network (CNN) adalah salah satu algoritma deep learning yang paling popular saat ini guna pengolahan citra. Pada era deep learning model CNN yang kompleks seperti saat ini memiliki tantangan-tantangan yang baru baik gradient vanishing, overfitting yang dikarenakan keterbatasan dataset, optimasi parameter hingga keterbatasan perangkat keras. Penelitian ini bertujuan mengukur pengaruh teknik fine tuning dan augmentasi dataset pada model transfer learning CNN Mobilenet, Efficientnet, dan Nasnetmobile dengan dataset yang variasi jumlah dataset yang memiliki jumlah yang terbatas. Pada hasil dari penelitian ini, dari ketiga dataset yang digunakan sebagai dalam melakukan training pada model efisien transfer learning baik MobileNet, EfficientNet, dan NasNetmobile, teknik augmentasi zoom range ataupun random erase dapat meningkatkan akurasi pada dataset dengan jumlah 56 citra dan 222 citra, sedangkan pada dataset dengan jumlah 500 data citra, semua teknik augmentasi terbukti dapat meningkatkan akurasi pada model arsitektur MobileNetV2 dan NasNetMobile. Sedangkan teknik fine tuning terbukti efektif dalam meningkatkan akurasi pada semua skala data yang kecil. AbstractToday deep learning technology is often associated with reliable processes (methods) when we have large amounts of data. In deep learning CNN (Convolutional Neural Network) plays a very important role which is often used to analyze (classify or recognize) visual images. In the era of deep learning models such as the complex Convolutional Neural Network (CNN) as it is today, it has new challenges such as gradient vanishing, overfitting due to dataset limitations, parameter optimization to hardware limitations. The MobileNet architecture was coined in 2017 by Howards, et al, which is one of the convolutional neural networks (CNN) architectures that can be used to overcome the need for excessive computing resources. This study aims to measure the effect of fine tune and dataset augmentation techniques on CNN mobilenet, efficientnet, and nasnetmobile transfer learning models with very small datasets. The results of this study are that of the three datasets used as the basis for training in efficient transfer learning models (mobilenet, efficientnet, and nasnetmobile), random erase and zoom range augmentation techniques dominate the increase in model accuracy. The amount of increase in accuracy after random erase or zoom range augmentation that occurs is about 0.03% to 0.1%.
SENTIMENT ANALYSIS OF CYBERBULLYING USING BIDIRECTIONAL LONG SHORT TERM MEMORY ALGORITHM ON TWITTER Safitri, Anisa Ika; Bayu Sasongko, Theopilus
Jurnal Teknik Informatika (Jutif) Vol. 5 No. 2 (2024): JUTIF Volume 5, Number 2, April 2024
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2024.5.2.1922

Abstract

Cyberbullying on social media such as Twitter is becoming an increasing social problem in today's society. Cyberbullying has a negative influence on mental health, increasing the risk of anxiety, sadness, and even suicide. The purpose of this research is to develop a model to classify tweets that contain or do not contain cyberbullying by applying the BiLSTM technique to sentiment analysis on Twitter. In this research, Word2Vec is used to weight each word in a tweet. The initial stage in this research is data collection with a total dataset of 47,692 tweets generated by Kaggle, preprocessing which consists of data cleaning, removing duplicates, case folding, tokenizing, stopword removal and lemmatization, classification and evaluation. This research uses the Bidirectional Long Short-Term Memory (Bi-LSTM) method and identifies patterns associated with bullying on social media. Testing uses Confusion Matrix and the results on classification show accuracy of 82.29%, precision of 82,04%, recall of 81,95% and F1-Score 81,89%. This sentiment analysis technique is expected to be the first step to combat and avoid cyberbullying on the Twitter platform. From several tests of existing reference algorithms, the classification accuracy performed includes having good performance.
Early Detection of Alzheimer's Disease with the C4.5 Algorithm Based on BPSO (Binary Particle Swarm Optimization) Rosyida, Anistya; Sasongko, Theopilus Bayu
Jurnal Sisfokom (Sistem Informasi dan Komputer) Vol. 12 No. 3 (2023): NOVEMBER
Publisher : ISB Atma Luhur

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32736/sisfokom.v12i3.1716

Abstract

Alzheimer's disease is a degenerative disease associated with memory loss, communication difficulties, mental health, thinking skills, and other psychological disorders that affect a person's daily activities. Alzheimer's disease is a disease that causes disability for people aged 70 years and over and is the seventh highest contributor to death in the world. However, until now there has not been found an effective treatment to cure Alzheimer's disease. Thus, early detection of Alzheimer's disease is very important so that sufferers of Alzheimer's disease can immediately receive intensive medical care so as to reduce the death rate from Alzheimer's disease. One method that can be used to detect Alzheimer's disease is by utilizing a machine learning algorithm model. The machine learning model in this study was carried out using the Decision Tree C4.5 algorithm classification method based on Binary Particle Swarm Optimization (BPSO). The C4.5 Decision Tree algorithm is used to classify Alzheimer's disease, while the BPSO algorithm is used to perform feature selection. By performing feature selection with the BPSO algorithm, the results show that the BPSO algorithm can improve accuracy and can increase the performance of the C4.5 algorithm in the Alzheimer's disease classification process. The results of the accuracy of the C4.5 algorithm using the BPSO feature selection are greater, namely 98.2% compared to the C4.5 algorithm without BPSO feature selection, which is only 96.4%. 
Peningkatan Manajemen E-Learning dan Keterlibatan Pengguna dalam Implementasi Moodle di SMK Nasional Berbah, Yogyakarta Hadinegoro, Arifiyanto; Sasongko, Theopilus Bayu; Ningrum, Fauzia Anis Sekar; Rahim, Abd. Mizwar A.; Fikri, Muhammad Ainul; Huda, Amirudin Khorul
Jurnal Pengabdian Masyarakat Inovasi Indonesia Vol 1 No 2 (2023): JPMII - Desember 2023
Publisher : CV Firmos

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.54082/jpmii.290

Abstract

Dokumen ini membahas implementasi aplikasi Moodle dalam manajemen pembelajaran dan administrasi di SMK Nasional Berbah, Yogyakarta. Tujuan dari penggunaan Moodle adalah untuk meningkatkan kreativitas dan produktivitas di lingkungan sekolah melalui platform e-learning. Meskipun SMK Nasional Berbah telah berusaha menciptakan media e-learning yang bermanfaat, mereka masih menghadapi beberapa kendala dalam pembuatan konten dan optimalisasi penggunaan e-learning. Untuk mengatasi kendala tersebut, dilakukan kegiatan sosialisasi dan pelatihan manajemen pengguna bagi karyawan dan staf khusus IT SMK Nasional Berbah. Kegiatan ini melibatkan 16 karyawan, tim staf e-learning, 2 pemateri, dan 3 pendamping pemateri dari Universitas Amikom. Fokus utama kegiatan ini adalah memberikan bimbingan teknis dalam pengelolaan pengguna LMS Moodle. Dalam pengabdian kepada masyarakat, dilakukan kolaborasi antara SMK Nasional Berbah dan Program Studi Informatika Universitas Amikom Yogyakarta. Kendala yang dihadapi dalam pelaksanaan pengabdian meliputi keterbatasan bandwidth server LMS Moodle, ketersediaan koneksi internet yang kurang memadai, dan kurangnya keterlibatan tim teknis dalam proses sosialisasi. Sebagai tindak lanjut, direncanakan langkah-langkah peningkatan yang melibatkan guru-guru sebagai pengguna utama Moodle. Hasil akhir dari kegiatan ini adalah para guru dan siswa mampu menggunakan Moodle sebagai wadah dalam kegiatan belajar mengajar.  Dengan demikian, implementasi Moodle di SMK Nasional Berbah dapat lebih efektif dan memberikan manfaat yang maksimal dalam proses pembelajaran dan administrasi di sekolah tersebut.