Claim Missing Document
Check
Articles

R-SUBGRUP NORMAL FUZZY NEAR-RING Saman Abdurrahman
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 5, No 2 (2011): JURNAL EPSILON VOLUME 5 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (131.618 KB) | DOI: 10.20527/epsilon.v5i2.72

Abstract

In this paper will be discussed R-subgroup normal fuzzy near-ring, with approach and    + 1  , for each .
STRUKTUR HEMIRING Noviliani Noviliani; Saman Abdurrahman; Na'imah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 15(1), 2021
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (362.816 KB) | DOI: 10.20527/epsilon.v15i1.2855

Abstract

Hemiring is a non-empty set  which is equipped with the addition operation " " and the multiplication operation " " and satisfied four conditions, namely:  is a commutative monoid with an identity element of ,  is semigroup, satisfied distributive properties the multiplication over addition on both sides, and satisfied    for each . There are several types of hemiring such as idempotent hemiring, zerosumfree hemiring, simple hemiring and others. In this paper, it discusses the sufficient and necessary conditions of a hemiring that is said to be commutative and said to be simple, prove the characteristics of the operation in zerosumfree hemiring, idempotent hemiring, and simple hemiring.
IDEAL MAKSIMAL DAN IDEAL PRIMA NEAR-RING Saman Abdurrahman
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 4, No 2 (2010): JURNAL EPSILON VOLUME 4 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (307.946 KB) | DOI: 10.20527/epsilon.v4i2.62

Abstract

This study discusses the near-ring ideal covering the ideal near-ring ideal and ideal prime near-ring. Next, we studied the relationship between ideal near-ring ideal and ideal prime near-ring.
JUMLAH ANTI IDEAL FUZZY DARI NEAR-RING Saman Abdurrahman
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 8, No 1 (2014): JURNAL EPSILON VOLUME 8 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (192.792 KB) | DOI: 10.20527/epsilon.v8i1.100

Abstract

In this paper, the concept of addition of fuzzy anti ideal from the near-ring and prove the properties of the sum. The result of this study is the ideal anti-fuzzy addition of the near-ring, is the ideal anti-fuzzy of the near-ring.
PRODUK KARTESIAN IDEAL FUZZY PADA RING Sapuah Sapuah; Saman Abdurrahman; Nurul Huda
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 11, No 1 (2017): JURNAL EPSILON VOLUME 11 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (145.555 KB) | DOI: 10.20527/epsilon.v11i1.114

Abstract

The concept of algebra fuzzy was initially introduced by Rosenfeld in 1971. In 1991, Malik and Moderson explained if cartesian product of two fuzzy subgroup from same group, then it was fuzzy subgroup too and if cartesian product of two fuzzy ideal from same ring, then it was fuzzy ideal too. We discuss the cartesian product of two or more fuzzy subgroups from different group, then it was fuzzy subgroup too and cartesian product of two or more fuzzy ideal from different ring, then it was fuzzy ideal too.
GRUP FAKTOR YANG DIBANGUN DARI SUBGRUP NORMAL FUZZY Mahfuz Tarmizi; Saman Abdurrahman; Muhammad Mahfuzh Shiddiq
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 13, No 1 (2019): JURNAL EPSILON VOLUME 13 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (975.233 KB) | DOI: 10.20527/epsilon.v13i1.3189

Abstract

A Quotient group is a set which contains coset members and satisfies group definition. These cosets are formed by group and its normal subgroup. A set which contains fuzzy coset members is also called a quotient group. These fuzzy cosets are formed by a group and its fuzzy normal subgroup. The purpose of this research is to explain quotient groups induced by fuzzy normal subgroups and isomorphic between them. This research construct sets which contain fuzzy coset members, define an operation between fuzzy cosets and prove these sets under an operation between fuzzy coset satisfy group definition, and prove theorems relating to qoutient groups and homomorphism. The results of this research are ????????⁄={????????|????∈????} is a qoutient group induced by a fuzzy normal subgroup, where ???? is a fuzzy normal subgroup of a group ????, ???????? is a fuzzy coset, and the binary operation is “∘” where ????????∘????????=???????????? for every ????????,????????∈????????⁄. An epimorphism ???? from a group ???? to a group ????′ and a fuzzy normal subgroup ???? of ???? which is constant on ???????????????? cause quotient goup ????????⁄ and ????′????????⁄ are isomorphic.
KOMPLEMEN IDEAL FUZZY DARI NEAR-RING Saman Abdurrahman
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 7, No 2 (2013): JURNAL EPSILON VOLUME 7 NOMOR 2
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (142.515 KB) | DOI: 10.20527/epsilon.v7i2.96

Abstract

This paper introduces the concept of conformation of the ideal fuzzy near-ring and ideal anti-fuzzy near-ring, and the relationship between the ideal fuzzy near-ring and its con- struction. The result of this study is that if α is the fuzzy ideal of the near-ring, then αc is the ideal fuzzy anti-near-ring, and also the opposite
RELASI FUZZY PADA GRUP FAKTOR FUZZY Ahmad Madani; Saman Abdurrahman; Na'imah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 14, No 1 (2020): JURNAL EPSILON VOLUME 14 NOMOR 1
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (280.497 KB) | DOI: 10.20527/epsilon.v14i1.2394

Abstract

Fuzzy subsets on the non-empty set is a mapping of this set to the interval . The concept of fuzzy subgroups introduced from advanced concept of fuzzy set in group theory. In concept of fuzzy set there is the concept of relations is fuzzy relations. In this study examined that fuzzy relations related to the equivalence and congruence on a fuzzy group and fuzzy factor group. The results of this study was to show that a fuzzy relation    if  and    if  is a fuzzy congruence relations on fuzzy group and a fuzzy relation  defined of is a fuzzy congruence relations on fuzzy factor group.  
KARAKTERISTIK UKURAN RISIKO DISTORSI Rusidawati Rusidawati; Aprida Siska Lestia; Saman Abdurrahman
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 16(1), 2022
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (364.513 KB) | DOI: 10.20527/epsilon.v16i1.5175

Abstract

Insurance is a risk transfer from the insured to the insurer. In general insurance companies are grouped into two types that life insurance and general insurance. For measure risk in general insurance the method used is using a measure of risk. In the study of risk management, there is one method forming risk measure known a distortion function. The purpose of this study is prove theorems of properties a measure of coherent and consistent risk of distortion. In this study explain the formation of a measure of risk distortion using a distortion function, indicates that if the distortion function is a concave function and shows the consistency of risk distortion measures preserve second order stochastic dominance and show coherence and consistency several of distortion risk measures. The results of this study concave distortion function is a necessary condition and sufficient condition for coherence and a strictly concave distortion function is a necessary condition and sufficient condition for strict ordering consistent with preserve second order stochastic dominance.
SIFAT-SIFAT KOSET FUZZY DARI SUBGRUP FUZZY SUATU GRUP Muhammad Rifaldy Yanwar; Saman Abdurrahman; Na'imah Hijriati
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol. 16(2), 2022
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/epsilon.v16i2.6943

Abstract

Konsep himpunan fuzzy digunakan untuk mempresentasikan suatu permasalahan yang sulit dinyatakan melalui himpunan tegas. Kemudian, penelitiaan konsep himpunan fuzzy dikombinasikan dengan bidang aljabar yang melahirkan konsep aljabar fuzzy. Penelitian aljabar fuzzy salah satunya adalah grup fuzzy. Dari penelitian ini memberikan ide bagi peneliti lainnya, yaitu seperti meneliti koset fuzzy dan terbentuknya grup faktor dari subgrup normal fuzzy. Koset fuzzy pada penelitian terbaru berupa koset kiri fuzzy, koset kanan fuzzy, dan koset tengah fuzzy. Tujuan penelitian ini adalah membuktikan sifat-sifat koset kiri fuzzy, koset kanan fuzzy dan koset tengah fuzzy, serta mengkaji hubungan pada koset kiri fuzzy dan koset kanan fuzzy dengan koset tengah fuzzy dari subgrup fuzzy suatu grup. Prosedur penelitian ini diawali dengan mempelajari konsep dasar yang digunakan dalam penelitian ini. Kemudian, dengan menggunakan konsep dasar tersebut, dibuktikan sifat-sifat koset kiri fuzzy, koset kanan fuzzy dan koset tengah fuzzy. Selanjutnya, mengkaji hubungan pada koset kiri fuzzy dan koset kanan fuzzy dengan koset tengah fuzzy pada subgrup fuzzy suatu grup. Hasil penelitian ini adalah pada subgrup fuzzy atas grup abelian, koset kiri fuzzy merupakan koset kanan fuzzy. Setiap subgrup fuzzy atas sebarang grup,  dengan  elemen identitas. Pada penelitian ini diperoleh juga syarat cukup dan syarat perlu kesamaan dua koset kiri (koset kanan) yang terbentuk dari dua subgrup fuzzy atas grup yang sama ataupun atas grup abelian yang sama, serta syarat cukup dan syarat perlu kesamaan dua koset tengah yang terbentuk dari dua subgrup fuzzy atas grup yang sama