Claim Missing Document
Check
Articles

Ideal Fuzzy Semiring Atas Level Subset Saman Abdurrahman
Jurnal Fourier Vol. 11 No. 1 (2022)
Publisher : Program Studi Matematika Fakultas Sains dan Teknologi UIN Sunan Kalijaga Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14421/fourier.2022.111.1-6

Abstract

Semiring merupakan salah satu perluasan dari ring, dengan cara menghilangan salah satu aksioma pada operasi pertama yaitu aksioma invers. Pada semiring terdapat konsep subsemiring dan ideal dengan kondisi bahwa setiap ideal semiring adalah selalu subsemiring. Tetapi kondisi kebalikannya belum tentu berlaku. Selain konsep subsemiring dan ideal semiring, pada struktur semiring diperkenalkan konsep homomorfisma semiring. Kondisi ini, analog dengan homomorfisma di ring, sehingga sifat-sifat yang ada pada semiring dapat dinduksi dari sifat - sifat di ring, seperti konsep image dan preimage di bawah homomorfisma semiring analog dengan konsep image dan preimage di bawah homomorfisma ring. Konsep ideal pada semiring jika dipadukan dengan konsep fuzzy, akan menghasilkan konsep baru, yaitu konsep ideal fuzzy semiring. Pada makalah ini, akan diperkenalkan konsep ideal fuzzy semiring, image dan preimage ideal fuzzy dari suatu homomorfisma semiring. Lebih lanjut, akan diselidiki sifat-sifat ideal fuzzy semiring, image dan preimage ideal fuzzy dibawah homomorfisma semiring melalui suatu level subset. [Semiring is one of the extensions of the ring by disappearing one of the axioms in the first operation, namely the inverse axiom. In semiring, there is the concept of subsemiring and ideal with the condition that every ideal semiring is always subsemiring. However, the opposite condition does not necessarily apply. In addition to the concept of subsemiring and the ideal of a semiring, in the semiring structure was introduced the concept of semiring homomorphism. This condition is analogous to the homomorphism in the ring so that the properties present in the semiring can be induced from the properties in the ring, such as the concept of image and preimage under the homomorphism of semiring analogous to the concept of image and preimage under the homomorphism of the ring. If combined with the fuzzy concept, the ideal concept in semiring will produce a new concept, namely the ideal concept of fuzzy semiring. This paper will introduce the concept of an ideal fuzzy semiring, image, and preimage ideal fuzzy from a semiring homomorphism. Furthermore, the properties of the fuzzy ideal semiring, image, and preimage of the fuzzy ideal will be investigated under the semiring homomorphism through a subset level.]
Pelatihan Pembuatan Penelitian Tindakan Kelas di SMPN 14 Banjarbaru Saman Abdurrahman; Lilis Harianti Hasibuan; Mochammad Idris; Na’ímah Hijriati; Juwita Lasterina; Sheryn Amelia Puteri; Gusti Muhammad Rosyadi; Audinta Sakti Firmansyah; Nor Hidayati
Jurnal Pengabdian Pada Masyarakat Vol 7 No 4 (2022): Jurnal Pengabdian Pada Masyarakat
Publisher : Universitas Mathla'ul Anwar Banten

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (459.4 KB) | DOI: 10.30653/002.202274.201

Abstract

CLASSROOM ACTİON RESEARCH-MAKING TRAİNİNG IN SMPN 14 BANJARBARU. Classroom Action Research is practical research intended to improve classroom learning. This research is one of the efforts of teachers or practitioners in the form of various activities carried out to improve and or improve the quality of learning in the classroom. Classroom Action Research can be interpreted as a process of studying learning problems in the classroom through self-reflection to solve these problems by carrying out various planned actions in real situations and analyzing any effects of the treatment. Classroom Action Research is one of the scientific publications in the context of sustainable teacher professional development aimed at improving and improving the quality of learning processes and outcomes or the quality of education in general. The article describes the implementation of Classroom Action Research Assistance Activities and Scientific Article Writing at SMPN 14 Banjarbaru, South Kalimantan. This activity is important because it can stimulate the creativity of teachers to conduct Classroom Action Research. The benefit of this activity is that teachers become more and more skilled in choosing or making appropriate learning methods for their students from time to time. Another impact of this activity can certainly improve teacher careers to a higher level.
Penjumlahan dari Subnear-ring Fuzzy Saman Abdurrahman
Jurnal Matematika Integratif Vol 11, No 1: April, 2015
Publisher : Department of Matematics, Universitas Padjadjaran

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (313.041 KB) | DOI: 10.24198/jmi.v11.n1.9367.1-6

Abstract

Dalam makalah diperkenalkan konsep penjumlahan subnear-ring fuzzy, penjumlahan ideal fuzzy dari near-ring, dan membuktikan beberapa sifat dari konsep ini. Hasil dari penelitian ini adalah penjumlahan dari subnear-ring fuzzy adalah subnear-ring fuzzy, dan penjumlahan ideal fuzzy dari near-ring adalah ideal fuzzy dari near-ring.
SIFAT SUBGRUP NORMAL DARI ANTI SUBGRUP NORMAL FUZZY Cendikia Hira; Saman Abdurrahman; Thresye Thresye
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 17, No 1 (2023)
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/epsilon.v17i1.9135

Abstract

A fuzzy set is a concept theory that provide a solution of problem that cannot be explained by crisp set. Along with time, research of a fuzzy set are combined with algebra that produce fuzzy algebra. One of the research is a fuzzy subgroup and fuzzy level subset. The other research is an anti fuzzy subgroup that is inspired by a fuzzy subgroup. The purpose of this research is to write further study of anti fuzzy subgroup properties by induction of properties of fuzzy algebra such as fuzzy set, fuzzy subgroup, and anti fuzzy subgroup. The research procedure is to study the basic concept of fuzzy set, fuzzy subgroup, and anti fuzzy subgroup. Using that concept to proof the properties of the anti fuzzy subgroup. The conclusions are in the anti fuzzy subgroup, set  with  anti fuzzy subgroup is a subgroup of a group  that can be applied to complement of  and normal anti fuzzy subgroup closely related to anti fuzzy left coset, right coset, and middle coset.     
HASIL KALI SILANG ω- SUBSEMIRING FUZZY Saman Abdurrahman; Thresye Thresye; Alya Hanifah Arif; Jumiati Jumiati; Tiara Roihatul Jannah
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN Vol 17, No 2 (2023)
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/epsilon.v17i2.8748

Abstract

Fuzzy semirings are one of the results of a combination of semirings and fuzzy sets. Semiring is one of the extensions of the ring. The cross product of two or more semirings gives a semiring. We are motivated to conduct cross-product research on fuzzy semiring based on the condition of cross-product semiring. This paper introduces the direct product of two (more)  fuzzy subsemirings. In addition, we investigate the relationship between the cross product of two (more) fuzzy subsemirings and the cross product of two (more) level subsets that are subsemiring
Pendampingan Pembuatan Suplemen Bahan Ajar Matematika dan Penelitian Tindakan Kelas di MGMP Matematika SMA/MA Kabupaten Tanah Laut Idris, Mochammad; Lestia, Aprida Siska; Abdurrahman, Saman; Hijriati, Na’ímah; Lissa, Hermei; Gunawan, I Wayan Ari; Amalia, Zharfa Rizqi; Andriani, Asfia
Jurnal Pengabdian Pada Masyarakat Vol 9 No 2 (2024): Jurnal Pengabdian Pada Masyarakat
Publisher : Universitas Mathla'ul Anwar Banten

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30653/jppm.v9i2.664

Abstract

Pasca pandemi Covid-19, institusi pendidikan berbenah kembali dengan mengatur ulang pelaksanaan kurikulumnya. Hal ini menuntut guru berinovasi dalam mengembangkan keterampilannya. Guru sebagai salah satu sumber belajar menjadi tumpuan peserta didiknya dalam mencari informasi dan penjelasan, terutama mengenai kesulitan dalam memahami materi pelajaran, khususnya pelajaran matematika di tingkat SLTA. Tim Pengabdian Kepada Masyarakat (PKM) dari Program Studi Matematika FMIPA Universitas Lambung Mangkurat (ULM) berinisiatif mengajak mitra yaitu forum Musyawarah Guru Mata Pelajaran (MGMP) Matematika SMA/MA Kabupaten Tanah Laut Kalimantan Selatan dalam kegiatan PKM dengan peserta guru anggota MGMP tersebut. Tujuannya untuk meningkatkan inovasi guru dalam pembelajaran siswa dan dapat menerbitkan artikel ilmiah pada jurnal nasional. Metode yang digunakan dalam kegiatan ini berupa diskusi dan sharing dengan materi tentang pembuatan suplemen pelajaran matematika, teknis dalam Penelitian Tindakan Kelas (PTK), dan pengenalan metode statistika untuk analisis data. Pelaksanaan kegiatan berlangsung dengan lancar dan sesuai harapan. Para peserta memberikan apresiasi yang baik dan bersemangat untuk membuat PTK serta menyusun materi tambahan dalam pelajaran matematika. Harapan selanjutnya, peserta didik dari anggota MGMP dapat bertambah wawasan dan semakin meningkat kualitas hasil belajarnya. After the Covid-19 pandemic, educational institutions have reorganized their curriculum implementation. This requires teachers to innovate in developing their skills. Teachers as one of the sources of learning become the focus of their students in seeking information and explanations, especially regarding difficulties in understanding subject matter, especially mathematics lessons at the high school level. The Community Service Team (PKM) from the Mathematics Study Program FMIPA Lambung Mangkurat University (ULM) took the initiative to invite partners, namely the forum for the High School Mathematics Teacher Consultation (MGMP) in Tanah Laut Regency, South Kalimantan, in PKM activities with teacher participants from the MGMP. The goal is to increase teacher innovation in student learning and be able to publish scientific articles in national journals. The method used in this activity is in the form of discussion and sharing with material on making math lesson supplements, techniques in Classroom Action Research (PTK), and introduction to statistical methods for data analysis. The implementation of the activity went smoothly and as expected. The participants gave good appreciation and were eager to make PTK and compile additional materials in math lessons. The next hope is that students from MGMP members can gain more insight and improve the quality of their learning outcomes.
SOSIALISASI PENYAKIT TIDAK MENULAR DI DESA PEMATANG PANJANG Diba, Farah; Angelina Novryance Tarapang; Mulidya, Mulidya; Revani Indahtiana; Alfina Raudhoh; Maulida Hardianti; Nurus Sahliah; Ihza Nur Alfaz; Muhammad Fadhilah Muchlis; Saman Abdurrahman
J-ABDI: Jurnal Pengabdian kepada Masyarakat Vol. 4 No. 6: Nopember 2024
Publisher : Bajang Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Kuliah Kerja Nyata (KKN) Membangun Desa Merdeka Belajar 2024" program requires students to apply their knowledge and skills in ways that benefit the community, with the aim of empowering the community and addressing various issues, including low awareness of non-communicable diseases (NCDs). One of the initiatives carried out is the "Protect Yourself" campaign in Pematang Panjang Village, South Kalimantan, which focuses on the prevention of diabetes and obesity. This study aims to evaluate the effectiveness of the "Protect Yourself" campaign in increasing community knowledge and awareness about NCDs, particularly diabetes and obesity, as well as encouraging behavioral changes towards a healthy lifestyle. Through a comprehensive educational approach, including outreach, leaflet distribution, and interactive discussions, the program succeeded in shifting community behavior towards a healthier lifestyle. Close collaboration between students, healthcare workers, and the local community was key to the program's success. The study results indicate that such programs have great potential in preventing NCDs and improving the quality of life for communities, and could serve as a model for similar programs in other regions.
PENERAPAN BIMBINGAN BELAJAR PADA SISWA SEKOLAH DASAR DI MIS AL-IHSAN PEMATANG PANJANG Fatmawati; Elen Agustina; Alfiani Sekar Melati; Herry Sutarto Ladjang; Nauva Adila; R. Septian Angga Saputra; Rahmadina, Rahmadina; Raihanah Abiyah Julia Lavenita; Saman Abdurrahman
J-ABDI: Jurnal Pengabdian kepada Masyarakat Vol. 4 No. 7: Desember 2024
Publisher : Bajang Institute

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Penerapan bimbingan belajar di sekolah dasar telah menjadi solusi penting dalam meningkatkan pemahaman siswa terhadap pelajaran, terutama pada mata pelajaran matematika yang sering dianggap sulit oleh siswa. Program Bergembira dengan Matematika (BERGEMA) dilaksanakan di MIS Al-Ihsan Pematang Panjang oleh tim KKN MBKM FMIPA ULM sebagai bentuk kontribusi untuk membantu siswa yang kesulitan dalam memahami materi matematika. Program ini dilakukan di luar jam pelajaran sekolah dengan metode yang interaktif dan menyenangkan. Hasil dari kegiatan ini menunjukkan peningkatan partisipasi siswa dan perbaikan pemahaman mereka terhadap materi. Berdasarkan data, jumlah peserta terus meningkat dari minggu pertama hingga minggu ketiga. Hal ini menunjukkan bahwa bimbingan belajar memberikan dampak positif bagi siswa, baik dari segi motivasi belajar maupun hasil akademis.
SOFT GROUPOID AND ITS PROPERTIES Abdurrahman, Saman
EPSILON: JURNAL MATEMATIKA MURNI DAN TERAPAN (EPSILON: JOURNAL OF PURE AND APPLIED MATHEMATICS) Vol 18, No 2 (2024)
Publisher : Mathematics Study Program, Faculty of Mathematics and Natural Sciences, Lambung Mangkurat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20527/epsilon.v18i2.13781

Abstract

A groupoid is a generalized form of the concept of a group, achieved by omitting the properties of associativity, identity, and inverses. In this paper, we introduce the concept of a soft groupoid, which serves as a generalization of the soft group. We define and explore the properties of intersection, AND, and union on soft groupoids and soft subgroupoids. Furthermore, we explore the properties of these operations when applied to collections of soft subgroupoids derived from a given soft subgroupoid.
LEVEL SOFT GROUP AND ITS PROPERTIES Abdurrahman, Saman; Idris, Mochammad; Faisal, Faisal; Hijriati, Na’imah; Thresye, Thresye; Lestia, Aprida Siska
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 19 No 3 (2025): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol19iss3pp2263-2274

Abstract

In this paper, we present an application of fuzzy subset and fuzzy subgroup to a soft set and a soft group, thereby creating a soft set and a soft group within the same group. Furthermore, we refer to the soft and soft groups as level soft sets and level soft groups. We also found out the level of soft sets and the operations on soft sets, such as intersection, union, and subset. We also examine what conditions a fuzzy subgroup and a soft group must meet to form a level soft group. Moreover, we scrutinize the properties of operations on a soft set, specifically intersection, union, and AND, and apply them to the level soft group to ascertain if they consistently produce a level soft group over the same set. Furthermore, we investigate the formation of a level soft and level soft group resulting from the homomorphism of the group and soft group. The research findings can enrich studies on the relationships between structures in fuzzy subgroups and soft groups and the application of soft group levels in further research.