Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Automated hierarchical classification of scanned documents using convolutional neural network and regular expression Rifiana Arief; Achmad Benny Mutiara; Tubagus Maulana Kusuma; Hustinawaty Hustinawaty
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 1: February 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i1.pp1018-1029

Abstract

This research proposed automated hierarchical classification of scanned documents with characteristics content that have unstructured text and special patterns (specific and short strings) using convolutional neural network (CNN) and regular expression method (REM). The research data using digital correspondence documents with format PDF images from pusat data teknologi dan informasi (technology and information data center). The document hierarchy covers type of letter, type of manuscript letter, origin of letter and subject of letter. The research method consists of preprocessing, classification, and storage to database. Preprocessing covers extraction using Tesseract optical character recognition (OCR) and formation of word document vector with Word2Vec. Hierarchical classification uses CNN to classify 5 types of letters and regular expression to classify 4 types of manuscript letter, 15 origins of letter and 25 subjects of letter. The classified documents are stored in the Hive database in Hadoop big data architecture. The amount of data used is 5200 documents, consisting of 4000 for training, 1000 for testing and 200 for classification prediction documents. The trial result of 200 new documents is 188 documents correctly classified and 12 documents incorrectly classified. The accuracy of automated hierarchical classification is 94%. Next, the search of classified scanned documents based on content can be developed.
Augmented Reality Design of Indonesia Fruit Recognition Dewi Agushinta R.; Ihsan Jatnika; Henny Medyawati; Hustinawaty Hustinawaty
International Journal of Electrical and Computer Engineering (IJECE) Vol 8, No 6: December 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (428.826 KB) | DOI: 10.11591/ijece.v8i6.pp4654-4662

Abstract

Augmented Reality (AR) is one of the popular technologies nowadays. Along with the technological advances, Augmented Reality is an effort to combine the real world and virtual worlds created through computers so that the boundary between the two becomes very thin because Augmented Reality allows users to interact in real-time with the system. Augmented Reality can be applied in various fields according to the needs of each user. One application is on Android-based mobile hardware applications. This research developed the Augmented Reality battle with some of the features more interactive, interesting and clearer information to facilitate the user in its operation. This Augmented Reality is applied to the Android mobile device with the name of FruitGarden. This paper presented of designing Augmented Reality for recognizing the fruit of Indonesia archipelago which will give a different view of performing the fruit image and information.
Identification types of plant using convolutional neural network Notonegoro, Radityo Hendratmojo Jati; Hustinawaty, Hustinawaty
International Journal of Electrical and Computer Engineering (IJECE) Vol 15, No 6: December 2025
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v15i6.pp5827-5836

Abstract

Artificial intelligence can be implemented in fields that related to environmental education by providing knowledge for taxonomy which recognize and identify plant species based on its features. The variety of plant species that inhabit in a certain area allows many plant species to be found that look similar so that difficult to distinguish and recognize a particular plant. Convolutional neural network (CNN) often used in object detection, you only look once (YOLO), one of CNN’s object detections, could identify object in real time and obtained good performance and accuracy in several researched. However, no studies have ever identified a plant from its flowers, leaves, and fruits. Therefore, the main object of this paper is identified types of plant with CNN (YOLOv8). The YOLOv8 model with 0.01 learning rate, 32 batch size, stochastic gradient descent (SGD) optimizer obtained highest precision of 69.62% and F1 score of 61.22%, recall of 54.73%, mAP50 and mAP50 – 90 on the training data of 57.61% and 42.49%.