Claim Missing Document
Check
Articles

PENERAPAN ALGORITMA TF-IDF DAN NAÏVE BAYES UNTUK ANALISIS SENTIMEN BERBASIS ASPEK ULASAN APLIKASI FLIP PADA GOOGLE PLAY STORE Sheva Aditya Helmayanti; Faqih Hamami; Riska Yanu Fa’rifah
Jurnal Indonesia : Manajemen Informatika dan Komunikasi Vol. 4 No. 3 (2023): Jurnal Indonesia : Manajemen Informatika dan Komunikasi (JIMIK)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) AMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/jimik.v4i3.415

Abstract

The development of the internet has changed people's lifestyle with the existence of FinTech. One of the popular FinTech innovations is the Flip digital wallet application. In this study, aspect-based sentiment analysis was carried out on Flip user reviews using the naive bayes algorithm. The test results show high accuracy, with an average accuracy of 0.84. The naive bayes algorithm is effective in classifying user reviews based on aspects of speed, security, and cost, with accuracies of 0.80, 0.87, and 0.84, respectively. This research provides important insights for service providers to improve service performance and innovation. The labelling data generated the most sentiment 0 (no sentiment), followed by sentiment 1 (positive) and 2 (negative). Negative sentiments have a high frequency on speed and security aspects, while positive sentiments have a high frequency on cost aspects. Thus, improvements are needed to the security system and speed of the Flip application to increase user satisfaction in these aspects. The naive bayes algorithm can be a useful tool in processing review data on e-wallet applications and similar services.
ASPECT-BASED SENTIMENT ANALYSIS TERHADAP ULASAN APLIKASI FLIP MENGGUNAKAN PEMBOBOTAN TERM FREQUENCY-INVERSE DOCUMENT FREQUENCY (TF-IDF) DENGAN METODE KLASIFIKASI K-NEAREST NEIGHBORS (K-NN) Ferda Ayu Dwi Putri Febrianti; Faqih Hamami; Riska Yanu Fa’rifah
Jurnal Indonesia : Manajemen Informatika dan Komunikasi Vol. 4 No. 3 (2023): Jurnal Indonesia : Manajemen Informatika dan Komunikasi (JIMIK)
Publisher : Lembaga Penelitian dan Pengabdian Kepada Masyarakat (LPPM) AMIK Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35870/jimik.v4i3.429

Abstract

The rapid growth of online transactions in Indonesia has increased the demand for efficient interbank transfer solutions. However, the costs associated with such transactions have become a significant obstacle. Flip, a company with a vision to become a global leader in customer satisfaction-driven services, offers a solution to this challenge. This study proposes an aspect-based sentiment analysis method using the K-Nearest Neighbors (K-NN) algorithm to analyze user sentiment on key aspects, namely speed, security, and the cost of using the Flip application. The results of this research provide valuable information that can be used as a basis to provide insights, suggestions and recommendations to businesses, so they can create better solutions and promote optimal user experience. The research results show that the K-NN model has the ability to predict user psychology well in all aspects, with a significant level of accuracy, specifically speed (73.04%), security (86, 05%) and costs (80.11%). In addition, this study also compares two model validation methods: simple data splitting method and K-Fold cross-validation. Although the simple data splitting method has a higher average accuracy, K-fold cross-validation is considered superior as it provides a more accurate and reliable estimate of the overall performance of the model. Sentiment analysis results show that Flip app users tend to give negative feedback on speed and security, while they give positive feedback on cost. Therefore, the main recommendation is that the company PT Fliptech Lentera Inspirasi Pertiwi improves the speed and security aspects to increase user satisfaction with the Flip application. Therefore, this customer-centric service will continue to prioritize user satisfaction as its primary goal.
Aspect-Based Sentiment Analysis On FLIP Application Reviews (Play Store) Using Support Vector Machine (SVM) Algorithm Nurul Hidayati; Faqih Hamami; Riska Yanu Fa’rifah
JOURNAL OF INFORMATICS AND TELECOMMUNICATION ENGINEERING Vol. 7 No. 1 (2023): Issues July 2023
Publisher : Universitas Medan Area

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31289/jite.v7i1.9768

Abstract

The development of fintech has driven the rapid growth of e-wallets like Flip, offering a convenient solution for interbank transfers without administrative fees. User reviews on the Play Store serve as crucial feedback for understanding the user experience. This research utilizes aspect-based sentiment analysis (ABSA) in combination with the SVM method to detect opinions, perceptions, and reviews pertaining to Flip's speed, security, and cost aspects. The objective is to provide valuable insights to both users and companies regarding their experiences with Flip in conducting financial transactions. The study employs a dataset comprising 13,500 preprocessed and cleansed data points, followed by TF-IDF vectorization. The data is divided into training and testing sets, utilizing techniques such as the train-test split and K-Fold Cross Validation to assess model performance. GridSearch analysis reveals that specific parameter combinations, notably C=1.0 and test_size=0.1, yield high accuracy across all aspects, with the linear kernel displaying the highest overall accuracy. Model evaluation is conducted using the confusion matrix and classification report, presenting accuracy, precision, recall, and F1-scores for each aspect. Notably, the Support Vector Machine model performs well, particularly in the speed, security, and cost aspects, where the cost aspect demonstrates exceptionally strong results. In summary, this study employs ABSA to analyze Flip application reviews, with the Support Vector Machine model showcasing impressive performance across various aspects, providing valuable insights for users and companies engaging with Flip's financial transaction services.Keywords: aspect-based sentiment analysis, support vector machine, reviews, Flip
Automatic Question Generator Menggunakan Metode Template-Based Jody Mardika; Oktariani Nurul Pratiwi; Faqih Hamami
eProceedings of Engineering Vol 10, No 2 (2023): April 2023
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak— Pada penelitian ini akan membahas tentang pengembangan generator soal otomatis untuk materi biologi pada jenjang SMA. Dalam pengembangan generator soal, tentunya telah banyak sekali contoh situs generator soal yang dapat ditemui di internet, akan tetapi hampir keseluruhan generator soal yang dapat ditemui di internet, mengharuskan pengguna untuk menggunakan bahasa inggris dan situs hanya bisa menghasilkan pertanyaan berupa pertanyaan singkat atau factoid, sehingga penelitian ini bertujuan untuk melakukan pengembangan generator soal berbahasa Indonesia dengan tipe pertanyaan non-factoid menggunakan pendekatan template-based. Selain menggunakan pendekatan Template-Based, penelitian ini akan menggunakan algoritma Naïve Bayes untuk proses klasifikasi kalimat dengan bantuan GridsearchCV dan pipeline dari TF-IDF Transformers, String-Match untuk proses eliminasi kalimat, dan Chunking Labelling untuk proses tagging kata. Model generator soal yang dikembangkan pada penelitian ini memiliki rata-rata tingkat akurasi sebesar 90% dengan tingkat persentase jumlah pertanyaan yang layak digunakan sekitar 60%, sehingga model generator yang dikembangkan sudah cukup layak digunakan, akan tetapi memerlukan penelitian lebih lanjut agar model generator soal yang dihasilkan dapat memiliki performa yang lebih baik.Kata kunci— automatic question generator, naïve bayes classifier, chunking labelling, template-based, GridsearchCV, biologi, Soal SMA
Prediksi Network Capacity Planning PT XYZ Menggunakan Algoritma Recurrent Neural Network (RNN) Muhammad Hafizh; Faqih Hamami; Tien Fabrianti Kusumasari
eProceedings of Engineering Vol 10, No 5 (2023): Oktober 2023
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak PT XYZ merupakan perusahaan yang menyediakan jaringan internet. Selain itu mereka juga menggunakan jaringan internet untuk penggunaan sehari-hari. Jaringan yang digunakan pasti memiliki kapasitas. Ketika penggunaan jaringan internet mendekati kapasitasnya maka akan terjadi penurunan kecepatan, oleh karena itu dibutuhkan sesuatu yang dapat memprediksi serta memantau penggunaan jaringan internet. Untuk memprediksi penggunaan jaringan internet, penerapan deep learning dapat digunakan dalam kasus ini. Salah satu algoritma yang digunakan dalam penelitian ini adalah Recurrent Neural Network (RNN). Dilakukan pengujian terhadap beberapa parameter seperti hidden layer, jumlah neuron pada hidden layer, jumlah epoch, dan jumlah batch size. Setelah melakukan pengujian dan evaluasi terhadap model dan parameter yang digunakan, didapatkan hasil untuk algoritma RNN dengan nilai error pada setiap id adalah 0.918812 untuk nilai R Squared dan 0.002233 untuk nilai MSE. Dari hasil pengujian model tersebut dilakukan peramalan untuk 60 hari kedepan dan terdapat satu id yang penggunaan jaringan internet hampir mencapai kapasitasnya yaitu id 23 pada tanggal 8 September 2022 diprediksi akan mencapai 7.5E+12 bit.Kata Kunci: Recurrent Neural Network, Network Capacity Planning, parameter, prediksi
Deteksi Anomali Lalu Lintas Jaringan Internal Inbound Dan Outbound Menggunakan Algoritma Long Short-Term Memory Khairunnisa Salsabila Riswanti; Faqih Hamami; Tien Fabrianti Kusumasari
eProceedings of Engineering Vol 10, No 5 (2023): Oktober 2023
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Abstrak— Saat ini penggunaan internet sudah menjadi kebutuhan dalam kegiatan sehari-hari. Berdasarkan laporan DataReportal, pengguna internet di Indonesia pada Januari 2022 ada sebanyak 73,7%. Data tersebut menunjukan bahwa seiring berkembangnya era digital, pengguna internet juga akan terus bertambah. Setiap aktivitas penggunaan internet akan terekam dalam suatu lalu lintas jaringan inbound dan outbound. Pada lalu lintas jaringan inbound dan outbound, akan menampilkan tren data normal. Namun dapat juga muncul data yang diluar tren yang disebut sebagai data anomali. Lalu lintas jaringan anomali tersebut dapat terjadi karena adanya peningkatan yang signifikan dalam volume data lalu lintas jaringan. Anomali pada data lalu lintas jaringan inbound dan outbound juga terjadi pada data lalu lintas jaringan PT XYZ yang merupakan perusahaan yang berfokus pada bidang jasa layanan TIK dan jaringan telekomunikasi di Indonesia. Untuk mencegah terjadinya data anomali, dapat menggunakan IDS melalui deteksi anomali dengan algoritma yang dapat memproses data sekuen dan data skala besar. Algoritma yang digunakan dalam penelitian ini adalah LSTM. Penelitian ini menggunakan metodologi CRISPDM sebagai sistematika penyelesaian masalah. Terdapat beberapa tahapan yang diterapkan yaitu business understanding, data understanding, data preparation, modelling, dan evaluasi. Pengujian model dan evaluasi model dilakukan berdasarkan parameter yang ditentukan menghasilkan model yang dapat mendeteksi anomali.Kata Kunci — deteksi anomali, deep learning, lstm
Implementasi Metode Asosiasi Untuk Analisis Penempatan Produk Retail Ruth Sesilya Ambarita; Deden Witarsyah; Faqih Hamami
eProceedings of Engineering Vol 10, No 2 (2023): April 2023
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

PREDIKSI CUACA PADA DATA TIME SERIES MENGGUNAKAN BACKPROPAGATION NEURAL NETWORK (BPNN) Muhammad Azzam Imaduddin; Faqih Hamami; Riska Yanu Fa'Rifah
eProceedings of Engineering Vol 10, No 5 (2023): Oktober 2023
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Perubahan cuaca yang ekstrim dapat menimbulkan bencana. Kerugian akibat bencana alam ini dapat kita minimalisir apabila ada persiapan yang matang dalam menghadapi kemungkinan terjadinya bencana alam. Dan persiapan yang matang dalam menghadapi bencana alam tentunya didasarkan pada pengetahuan tentang prediksi kapan dan dimana bencana alam tersebut akan terjadi. Perubahan cuaca ini dapat diprediksi berdasarkan data cuaca di masa lampau. Data pada penelitian kali ini bersumber dari database Badan Meteorologi, Klimatologi dan Geofisika(BMKG). Kemudian dilakukan preprocessing, berupa cleansing dan penyesuaian data. Backpropagation neural network (BPNN) merupakan algoritma yang dipakai penulis dalam melakukan forecasting terkait perubahan kondisi cuaca. Backpropagation neural network (BPNN) pada penelitian ini dibangun dengan menggunakan library keras dan Tensorflow. Bahasa pemrograman yang digunakan pada penelitian kali ini adalah python dan dengan menggunakan tools jupyter notebook. Model yang digunakan adalah menggunakan 1 input layer, 6 hidden layer dan 1 output layer. Sedangkan untuk epochs yang digunakan berjumlah 10000. Dan model evaluasi dengan Mean Squared Error (MSE) Hasil dari penelitian ini berbentuk grafik per parameter cuaca di wilayah Bandung pada tahun 2021.Kata kunci— backpropagation neural network, cuaca, time series, machine learning
Optimizing Traffic Congestion in Route Planning Using a Simple Path Algorithm Brillian Adhiyaksa Kuswandi; Faqih Hamami; Riska Yanu Fa’rifah
Syntax Literate Jurnal Ilmiah Indonesia
Publisher : Syntax Corporation

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36418/syntax-literate.v9i4.15352

Abstract

This essay examines the various learning styles that students can choose from, depending on their preferences. In the COVID-19 era, lectures have been discontinued in classrooms all across the world, but the teaching and learning process is still possible through online platforms. There are learning types with unique characteristics that like to work alone or in groups, as well as visual, auditory, tactile, and kinesthetic learning styles. While some students will adjust to the lecturers' teaching approach, it can be challenging for lecturers to accommodate each student's unique learning preferences. In order to accommodate various student learning styles, lecturers must create their instructional materials in this manner. This article's goals are to: 1) describe and classify the idea of learning styles; 2) emphasize the significance of determining the research participants' preferred learning styles; and 3) emphasize that if a lecturer's teaching style reflects the preferences of the student's preferred learning style, the student's learning outcomes will be enhanced. In this study, a survey, a mix of quantitative and qualitative approaches, as well as questionnaires, are used to gather data on the four preferred learning styles. As a consequence, the majority of participants favored the kinesthetic learning strategy in both solo and group work. In this study, a survey, a mix of quantitative and qualitative approaches, as well as questionnaires, are used to gather data on the four preferred learning styles. As a consequence, the majority of participants favored the kinesthetic learning strategy in both solo and group work.
Analisis Sentimen Berbasis Aspek Terhadap Ulasan Pengguna Aplikasi Pegadaian Digital Menggunakan Algoritma Naïve Bayes Syfani Alya Fauziyyah; Faqih Hamami; Rachmadita Andreswari
Kesatria : Jurnal Penerapan Sistem Informasi (Komputer dan Manajemen) Vol 4, No 4 (2023): Edisi Oktober
Publisher : LPPM STIKOM Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/kesatria.v4i4.245

Abstract

Pegadaian. PT. Pegadaian's form of transformation is the launch of Pegadaian Digital application. The application aims to facilitate the community and improve the service of products owned by PT. Pegadaian. Based on the monitoring as of 20 October 2022, the Pegadaian Digital application received 3.5 points on a scale of 5. This score is low because it contains many negative reviews. Therefore, it is necessary to analyse the review section of the application to increase the score. The method that can be used to analyse it is aspect-based sentiment analysis. Aspects are those that relate to the experience felt by users, namely aspects of learnability, efficiency, errors, and satisfaction. Sentiment analysis requires an optimal algorithm, one of which is Naïve Bayes. This algorithm was chosen because it is known as a simple but efficient algorithm when processing large amounts of data. This research uses two test scenarios, the first scenario using different ratios and base parameters and the second scenario using the addition of smoothing parameters. The result of this research is that the model with the ratio of 80:20 and the addition of smoothing is the best model for sentiment analysis because it produces the best performance value, with an accuracy value of 92%, precision of 80%, recall of 70% and f1-score of 73%.
Co-Authors Agus Maolana Hidayat Ahmad, Mokhtarrudin Al amudi, Farhan Hasan Aldi Akbar Anis Farihan Mat Raffei Anis Farihan Mat Raffei Aprilia Mega Puspitasari Arrahmani, Farras Hilmy Aziz, Abdurrahman Brillian Adhiyaksa Kuswandi Budi Rustandi Kartawinata Dahlan, Iqbal Ahmad Deandra, Valen Deden Witarsyah Dimas Raihan Zein Dina Meliana Saragi Edi Nuryatno Fa'rifah, Riska Yanu Fadhil Hidayat Faishal Mufied Al Anshary Febrianti, Ferda Ayu Dwi Putri Ferda Ayu Dwi Putri Febrianti Ferda Ernawan Fetty Fitriyanti Lubis Firzania, Heidea Yulia Fitri Bimantoro Hadwirianto, Muhammad Raihan Helmayanti, Sheva Aditya I Gede Pasek Suta Wijaya Ilma Nur Hidayati Iqbal Ahmad Dahlan Iqbal Santosa Irfan Darmawan Ismail, Mohd Arfian Jauhari, M.Habib Jody Mardika Joel Rayapoh Damanik Khairunnisa Salsabila Riswanti Kurniawan, Muhammad Rayhan Lubis, Rizki Aulia Akbar Mangsor, Miza Mat Raffei, Anis Farihan Muhammad Azzam Imaduddin Muhammad Bryan Gutomo Putra Muhammad Fahmi Hidayat Muhammad Fauzan Nasrullah Muhammad Hafizh Murahartawaty Murahartawaty Nasrullah, Muhammad Fauzan Nicolaus Advendea Prakoso Indaryono Novanza, Alvin Renaldy Nuraliza, Hilda Nurul Hidayati Oktariani Nurul Pratiwi Orvalamarva Pratiwi, Oktaria Nurul Puruhita, Maretha Fitrie Rachmadita Andreswari Rahmah, Najma Syarifa Rahmat Fauzi Ramdani, Dwi Fickri Insan Razali, Raja Razana Raja Rd. Rohmat Saedudin Ruth Sesilya Ambarita Satya Nugraha, Gibran Sheva Aditya Helmayanti Silmy Sephia Nurashila Sinung Suakanto Suhono Harso Supangkat Sujak, Aznul Fazrin bin Abu Syfani Alya Fauziyyah Tatang Mulyana Tien Fabrianti Kusumasari Vina Fadillah Widyadhari, Dinda Putri Yudo Husodo, Ario Yulizar, Iqbal Yuni Kardila Zahid, Azham