Claim Missing Document
Check
Articles

Found 4 Documents
Search

Real-Time Optimal Switching Angle Scheme for a Cascaded H-Bridge Inverter using Bonobo Optimizer Taha, Taha A.; Wahab, Noor Izzri Abdul; Hassan, Mohd Khair; Zaynal, Hussein I.; Taha, Faris Hassan; Hashim, Abdulghafor Mohammed
Journal of Robotics and Control (JRC) Vol 5, No 4 (2024)
Publisher : Universitas Muhammadiyah Yogyakarta

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.18196/jrc.v5i4.21701

Abstract

This study demonstrates a novel method for using the Bonobo Optimizer (BO) to selective harmonic elimination in a cascaded H-Bridge Multilevel Inverter (CHB-MLI) running on solar power. The primary objective is to calculate, in real time, the optimal switching angles for eliminating low-order harmonics while maintaining a constant output voltage despite variations in the input voltage. To prove that the BO algorithm works, tests were done on a three-phase, seven-level CHB-MLI that compared it to other evolutionary algorithms like the genetic algorithm (GA) and particle Swarm optimization (PSO). An adaptive BO-Artificial neural network (BO-ANN) based system was developed to compute real-time switching angles and applied to a 7-level CHB-MLI. The results demonstrate that the BO algorithm is the most accurate and fastest evolutionary algorithm for calculating optimal switching angles. This study illustrates the BO algorithm's effective utilization in real-time harmonic elimination applications in CHB-MLI.
Simplifying the electronic wedge brake system model through model order reduction techniques Che Hasan, Mohd Hanif; Hassan, Mohd Khair; Ahmad, Fauzi; Marhaban, Mohammad Hamiruce; Haris, Sharil Izwan; Arasteh, Ehsan
Bulletin of Electrical Engineering and Informatics Vol 13, No 2: April 2024
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v13i2.5815

Abstract

The electronic wedge brake (EWB) uses self-reinforcement principles to optimise stopping power, but its mathematical model has various actuation angles and system dynamics making controller design complex and computationally burdensome. Therefore, the model order reduction (MOR) is made based on three factors that may have a negligible influence on the EWB system: the motor inductance, lead screw axial damping, and wedge mass. Six reduced order model (ROM) types were proposed when one, two, or all factors were ignored. The ROM accuracy was analysed using the frequency and time domain. The percentage of root means square error (RMSE) response value between the EWB benchmark model, and the predicted response based on the ROM was found to be less than 2%, with ROM size reduced from 5 to 2 orders. It guarantees that the new ROM series will be useful for simpler EWB controller design. The proposed ROM simplifies the original model drastically while retaining accuracy at an adequate level. Even though the simplest EWB model is a 2nd  order linear system, the best ROM vary depending on EWB design parameters.
Optimization of fuel cell switching control based on power following strategy in fuel cell hybrid electrical vehicle Deng, Leipengyun; Mohd Radzi, Mohd Amran; Shafie, Suhaidi Bin; Hassan, Mohd Khair
International Journal of Renewable Energy Development Vol 14, No 2 (2025): March 2025
Publisher : Center of Biomass & Renewable Energy (CBIORE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.61435/ijred.2025.60780

Abstract

Fuel cell hybrid electric vehicles (FCHEVs), integrating fuel cell (FC) with batteries, have attracted significant research attention due to their emission-free operation, enhanced efficiency, and quick refuelling capabilities. Efficient energy management strategies (EMSs) are crucial in allocating energy between these sources and controlling power flow from FCs and batteries. The power following control (PFC) strategy has emerged as one of the most extensively utilized approaches in automotive applications owing to its superior real-time performance, ease of calculation, and straightforward design. This paper proposes a PFC-optimized strategy focused on improving FC durability and fuel economy by optimizing the switching control to fill the gap in frequent toggling of FC caused by traditional PFC strategy. The outcomes derived from the co-simulation conducted with AVL CRUISE and MATLAB/Simulink for developing complete FCHEV model and EMS model, respectively, indicate that under the China Light-duty Vehicle Test Cycle for Passenger Car (CLTC-P), the PFC-optimized strategy, in comparison to the traditional PFC strategy, reduces battery state of charge (SOC) fluctuations by 68.93% and decreases hydrogen consumption per 100 km by 2.71%. Meanwhile, this strategy is also proven effective in other operating conditions and reduces fuel cell switching times during operation. Therefore, the PFC-optimized strategy suggested in this study contributes to better performance in battery SOC, battery life, FC durability and fuel economy.
Optimization of Harmonic Elimination in PV-Fed Asymmetric Multilevel Inverters Using Evolutionary Algorithms Almalaisi, Taha Abdulsalam; Abdul Wahab, Noor Izzri; Zaynal, Hussein I.; Hassan, Mohd Khair; Majdi, Hasan S.; Radhi, Ahmed Dheyaa; Solke, Nitin; Sekhar, Ravi
International Journal of Robotics and Control Systems Vol 5, No 2 (2025)
Publisher : Association for Scientific Computing Electronics and Engineering (ASCEE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31763/ijrcs.v5i2.1785

Abstract

Modern power electronics depend heavily on Multilevel Inverters (MLIs) to drive high-power systems operating in renewable energy systems electric vehicles along with industrial motor drives. MLIs create AC signals of high quality by joining multiple DC voltage sources which leads to minimal harmonic distortion outputs. The Cascaded H-Bridge MLI (CHB-MLI) stands out as a first choice among different topologies of MLI for photovoltaic (PV) applications because it includes modular features with fault tolerance capabilities and excellent multi-DC source integration. To achieve effective operation MLIs need optimized control strategies that reduce harmonics while maintaining highest performance. Using SHE-PWM technology provides an effective technique for harmonic frequency reduction which allows the improvement of waveform integrity. Technical restrictions make the solution of SHE-PWM nonlinear equations exceptionally challenging to implement. The resolution of complex non-linear equations requires implementation of GA combined with PSO and BO for optimal switching angle determination. The research investigates an 11-level asymmetric CHB-MLI using five solar panels where SHE-PWM switching angles are optimized through GA, PSO and BO applications. Simulation tests validate that the implemented algorithms succeed in minimizing Total Harmonic Distortion (THD) and removing fundamental harmonic disturbances. The evaluation demonstrates distinct capabilities of each optimization approach between accuracy rates and computational speed performance. These optimization methods yield practical advantages which boost the performance of multi-level inverters. The researchers who follow should study actual hardware deployments together with combined control approaches to enhance power electronic applications.