Claim Missing Document
Check
Articles

Found 3 Documents
Search

MOLD DESIGN AND FLOW ANALYSIS FOR PRODUCT PROPELLER APC SF 11X4.7 WITH MINIMUM SHRINKAGE AND WARPAGE Sahputra, Wahyu Puji; Budiyantoro, Cahyo; Nugroho, Gesang; Adam, Muhammad Kevin
Jurnal Rekayasa Mesin Vol. 15 No. 2 (2024)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v15i2.1669

Abstract

Making molds in the injection molding manufacturing process is one of the basic steps that functions to prevent product defects during the production process. The product defects that most often occur in this manufacturing process include shrinkage and warpage defects. This research will discuss the mold design for the APC SF 11x4.7 propeller product with a twist variation of 45o and minimum shrinkage and warpage values. Glass Fiber Reinforced Polypropylene (GFRPP) will be used as the propeller product material. The entire design process to testing will be carried out using software assistance. The Taguchi method with an L9 orthogonal array matrix (34) was used in this research. where L9 explains that the experiment will be carried out nine times, and 34 means there are three levels and four main factors. The four main factors consist of packing pressure, packing time, melting temperature and injection pressure. The Taguchi method is used with the aim of making it easier to find the variation value that produces the lowest shrinkage and warping defects in the product. The simulation results show that the variation with the smallest shrinkage value produces a value of 7.9% and the variation with the smallest warpage value produces a value of 1.051 mm
Influence of annealing on the physical and optical properties of Ge thin films deposited using thermal evaporation Hilmi, Isom; Adam, Muhammad Kevin; Purwadi, Joko; Soesanto, Qidir Maulana Binu; Kusuma, Damar Yoga
Journal of Physics and Its Applications Vol 7, No 2 (2025): May 2025
Publisher : Diponegoro University Semarang Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14710/jpa.v7i2.24517

Abstract

Germanium (Ge) is extensively utilized in various technological applications, particularly in optoelectronic devices due to its favorable electronic properties. In this study, Ge thin films were deposited onto soda-lime glass substrates using the thermal evaporation technique. The deposited films were subsequently subjected to annealing at temperatures ranging from 200 to 700 °C. Comprehensive characterization of the films was performed using XRD to analyze crystallinity, UV-Vis spectroscopy to evaluate optical properties, and SEM to investigate surface topography. The annealing process induced a significant phase transformation from an amorphous state to a co-existing Ge and GeO2 structures, as evidenced by XRD measurements. This structural evolution was accompanied by notable changes in the optical properties of the films. Specifically, an increase in annealing temperature resulted in a higher absorbance in the longer wavelength regions of the UV-Vis spectrum. These findings highlight the possibility of a controlled manipulation on the structural and optical characteristics of Ge thin films by thermal treatment, with potential applications in optoelectronic devices.
MOLD DESIGN AND FLOW ANALYSIS FOR PRODUCT PROPELLER APC SF 11X4.7 WITH MINIMUM SHRINKAGE AND WARPAGE Sahputra, Wahyu Puji; Budiyantoro, Cahyo; Nugroho, Gesang; Adam, Muhammad Kevin
Jurnal Rekayasa Mesin Vol. 15 No. 2 (2024)
Publisher : Jurusan Teknik Mesin, Fakultas Teknik, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21776/jrm.v15i2.1669

Abstract

Making molds in the injection molding manufacturing process is one of the basic steps that functions to prevent product defects during the production process. The product defects that most often occur in this manufacturing process include shrinkage and warpage defects. This research will discuss the mold design for the APC SF 11x4.7 propeller product with a twist variation of 45o and minimum shrinkage and warpage values. Glass Fiber Reinforced Polypropylene (GFRPP) will be used as the propeller product material. The entire design process to testing will be carried out using software assistance. The Taguchi method with an L9 orthogonal array matrix (34) was used in this research. where L9 explains that the experiment will be carried out nine times, and 34 means there are three levels and four main factors. The four main factors consist of packing pressure, packing time, melting temperature and injection pressure. The Taguchi method is used with the aim of making it easier to find the variation value that produces the lowest shrinkage and warping defects in the product. The simulation results show that the variation with the smallest shrinkage value produces a value of 7.9% and the variation with the smallest warpage value produces a value of 1.051 mm