Claim Missing Document
Check
Articles

Found 35 Documents
Search

Batik Classification using Deep Convolutional Network Transfer Learning Yohanes Gultom; Aniati Murni Arymurthy; Rian Josua Masikome
Jurnal Ilmu Komputer dan Informasi Vol 11, No 2 (2018): Jurnal Ilmu Komputer dan Informasi (Journal of Computer Science and Information
Publisher : Faculty of Computer Science - Universitas Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (504.497 KB) | DOI: 10.21609/jiki.v11i2.507

Abstract

Batik fabric is one of the most profound cultural heritage in Indonesia. Hence, continuous research on understanding it is necessary to preserve it. Despite of being one of the most common research task, Batik’s pattern automatic classification still requires some improvement especially in regards to invariance dilemma. Convolutional neural network (ConvNet) is one of deep learning architecture which able to learn data representation by combining local receptive inputs, weight sharing and convolutions in order to solve invariance dilemma in image classification. Using dataset of 2,092 Batik patches (5 classes), the experiments show that the proposed model, which used deep ConvNet VGG16 as feature extractor (transfer learning), achieves slightly better average of 89 ± 7% accuracy than SIFT and SURF-based that achieve 88 ± 10% and 88 ± 8% respectively. Despite of that, SIFT reaches around 5% better accuracy in rotated and scaled dataset.
Keyblock for Content-based Image Retrieval (Vector quantization Comparison In Piercing Domain Image) I Gusti Agung Gede Arya Kadyanan; Wahyudi -; Aniati Murni Arymurthy
Jurnal Ilmu Komputer Vol. 5, No. 1 April 2012
Publisher : Informatics Department, Faculty of Mathematics and Natural Sciences, Udayana University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1156.45 KB)

Abstract

Keyblock is a generalization of the text-based information retrieval technology in the image domain. The main purpose of this framework is to find the codebook of a given size from a set of training image blocks. This main purpose can be achieved with any Vector quantization algorithm. This paper is an answer to the questions: “Can we use keyblock for piercing pattern?” Which one is the best algorithm between GLA or PNNA for VQ ?” The paper begins by describing some basic theory of Texture Feature, Keyblock-based, Vector quantization, Generalized Lloyd Algorithm (GLA) and Pairwise Nearest Neighbour Algorithm (PNNA). Next, it summarizes the implementation of both algorithm in keyblock framework for piercing pattern. Finally, it describes the experimental result of this research.
CIELab Color Moments: Alternative Descriptors for LANDSAT Images Classification System Retno Kusumaningrum; Hisar Maruli Manurung; Aniati Murni Arymurthy
INKOM Journal Vol 8, No 2 (2014)
Publisher : Pusat Penelitian Informatika - LIPI

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/j.inkom.409

Abstract

This study compares the image classification system based on normalized difference vegetation index (NDVI) and Latent Dirichlet Allocation (LDA) using CIELab color moments as image descriptors.  It was implemented for LANDSAT images classification by evaluating the accuracy values of classification systems. The aim of this study is to evaluate whether the CIELab color moments can be used as an alternatif descriptor replacing NDVI when it is implemented using LDA-based classification model.  The result shows that the LDA-based image classification system using CIELab color moments provides better performance accuracy than the NDVI-based image classification system, i.e 87.43% and 86.25% for LDA-based and NDVI-based respectively.  Therefore, we conclude that the CIELab color moments which are implemented under the LDA-based image classification system can be assigned as alternative image descriptors for the remote sensing image classification systems with the limited data availability, especially when the data only available in true color composite images.
Fuzzy Latent-Dynamic Conditional Neural Fields for Gesture Recognition in Video Intan Nurma Yulita; Mohamad Ivan Fanany; Aniati Murni Arymurthy
International Journal on Information and Communication Technology (IJoICT) Vol. 2 No. 2 (2016): December 2016
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/IJOICT.2016.22.124

Abstract

With the explosion of data on the internet led to the presence of the big data era, so it requires data processing in order to get the useful information. One of the challenges is the gesture recognition the video processing. Therefore, this study proposes Latent-Dynamic Conditional Neural Fields and compares with the other family members of Conditional Random Fields. To improve the accuracy, these methods are combined by using Fuzzy Clustering. From the result, it can be concluded that the performance of Latent-Dynamic Conditional Neural Fields are  lower than Conditional Neural Fields but higher than the Conditional Random Fields and Latent-Dynamic Conditional Random Fields. Also, the combination of Latent-Dynamic Conditional Neural Fields and Fuzzy C-Means Clustering has the highest. This evaluation is tested in a temporal dataset of gesture phase segmentation.
Combining Deep Belief Networks and Bidirectional Long Short-Term Memory Intan Nurma Yulita; Mohamad Ivan Fanany; Aniati Murni Arymurthy
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 4: EECSI 2017
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (307.775 KB) | DOI: 10.11591/eecsi.v4.1051

Abstract

This paper proposes a new combination of Deep Belief Networks (DBN) and Bidirectional Long Short-Term Memory (Bi-LSTM) for Sleep Stage Classification. Tests were performed using sleep stages of 25 patients with sleep disorders. The recording comes from electroencephalography (EEG), electromyography (EMG), and electrooculography (EOG) represented in signal form. All three of these signals processed and extracted to produce 28 features. The next stage, DBN Bi-LSTM is applied. The analysis of this combination compared with the DBN, DBN HMM (Hidden Markov Models), and Bi-LSTM. The results obtained that DBN Bi-LSTM is the best based on precision, recall, and F1 score.
PERBANDINGAN KLASIFIKASI BERBASIS OBYEK DAN KLASIFIKASIBERBASIS PIKSEL PADA DATA CITRA SATELIT SYNTHETICAPERTURE RADAR UNTUK PEMETAAN LAHAN(COMPARISON OF OBJECT BASED AND PIXEL BASEDCLASSIFICATION ON SYNTHETIC APERTURE RADAR SATELLITEIMAGE DATA FOR LAND MAPPING) Ahmad Sutanto; Bambang Trisakti; Aniati Murni Arimurthy
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 11 No. 1 Juni 2014
Publisher : Indonesian National Institute of Aeronautics and Space (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1671.092 KB)

Abstract

Pemanfaatan data penginderaan jauh untuk pemetaan lahan sudah lama berkembang. Di Indonesia yang beriklim tropis, awan menjadi masalah klasik dalam pemindaian permukaan bumi dengan menggunakan satelit penginderaan jauh sensor optik. Satelit dengan sensor Synthetic Aperture Radar (SAR) mempunyai kemampuan untuk menembus awan sehingga menjadi solusi permasalahan tutupan awan. Pada penelitian ini digunakan data ALOS PALSAR untuk mengkaji teknik klasifikasi berbasis obyek dan berbasis piksel. Data ALOS PALSAR dipilih karena mempunyai kemampuan pengenalan suatu obyek berdasarkan karakteristik hamburan baliknya (backscatter). Klasifikasi berbasis obyek menggunakan metode Statistical Region Merging (SRM) untuk proses segmentasi obyek, dan metode Support Vector Machine (SVM) untuk proses klasifikasi, sedangkan klasifikasi berbasis piksel menggunakan metode SVM. Pada tahap klasifikasi telah diujicobakan beberapa fitur Dekomposisi Target dan Dekomposisi Citra dari data ALOS PALSAR. Pengujian akurasi klasifikasi dilakukan dengan metode confusion matrix menggunakan data Region of Interest (ROI) dari data QuickBird. Implementasi klasifikasi berbasis obyek memberikan hasil lebih baik dari klasifikasi berbasis piksel dengan jumlah fitur optimal yakni 7 fitur, terdiri dari 3 fitur dekomposisi Freeman (Red, Green, Blue), Entropy, Alpha Angle, Anisotrophy dan Normalized Difference Polarization Index (NDPI). Akurasi keseluruhan mencapai 73,64% untuk hasil klasifikasi berbasis obyek dan 62,6% untuk klasifikasi berbasis piksel.Kata kunci : Klasifikasi berbasis obyek, SRM, SVM, Sensor SAR1
KLASIFIKASI FASE PERTUMBUHAN PADI BERDASARKAN CITRA HIPERSPEKTRAL DENGAN MODIFIKASI LOGIKA FUZZY (PADDY GROWTH STAGES CLASSIFICATION BASED ON HYPERSPECTRAL IMAGE USING MODIFIED FUZZY LOGIC) Febri Maspiyanti; Ivan Fanany; Aniati Murni Arymurthy
Jurnal Penginderaan Jauh dan Pengolahan Data Citra Digital Vol. 10 No. 1 Juni 2013
Publisher : Indonesian National Institute of Aeronautics and Space (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (797.304 KB)

Abstract

Penginderaan Jauh merupakan teknologi yang mampu mengatasi permasalahan pengukuran data untuk informasi yang cepat dan akurat. Pengimplementasian teknologi Penginderaan Jauh dalam bidang pertanian salah satunya adalah dalam pengambilan data citra hiperspektral untuk mengetahui kondisi maupun umur tanaman padi. Hal tersebut diperlukan untuk estimasi rice yield demi mendukung kebijakan pemerintahan dalam melakukan impor beras untuk memenuhi kebutuhan pangan di Indonesia. Untuk mendapatkan model dalam estimasi rice yield yang memiliki akurasi tinggi harus diawali dengan penentuan fase dari tanaman padi. Pemilihan classifier yang tepat juga harus didukung pemilihan fitur yang tepat untuk mendapatkan hasil akurasi yang optimal. Dalam penelitian ini, kami melakukan pembandingan antara logika Fuzzy dengan Modifikasi Logika Fuzzy untuk melakukan klasifikasi sembilan fase pertumbuhan padi berdasarkan citra hiperspektral. Modifikasi Logika Fuzzy memiliki cara kerja yang sama dengan Logika Fuzzy namun dengan diberi tambahan crisp rules pada Fuzzy Rules yang diharapkan dapat meningkatkan akurasi yang mampu dicapai. Dalam penelitian ini, Modifikasi Logika Fuzzy terbukti mampu meningkatkan akurasi hingga 10% dibandingkan Logika Fuzzy. Kata Kunci: Hiperspektral, Logika Fuzzy, Padi
POLARIMETRIC-SAR CLASSIFICATION USING FUZZY MAXIMUM LIKEHOOD ESTIMATION CLUSTERING WITH CONSIDERATION OF COMPLEMENTARY INFORMATION BASED ON PHYSICAL POLARIMETRIC PARAMETERS, TARGET SCATTERING CHARACTERISTIK, AND SPATIAL CONTEXT Katmoko Ari Sambodo; Aniati Murni; Ratih Dewanti; Mahdi Kartasasmita
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 5,(2008)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (822.5 KB) | DOI: 10.30536/j.ijreses.2008.v5.a1225

Abstract

This paper shows a study on an alternative method for unsupervised classification of polarimetric-Syenthetic Aperture Radar (SAR) data. The first step was to extract several main physical polarimetric parameters (polarization power, coherence, and phase difference) from polarimetric covariance matrix (or coherency matrix) and physical scattering characteristics of land use/cover based on polarimetric decomposition (Cloude decomposition model). In this paper, we found that these features have complementary information which can be integrated in order to improve the discrimination of different land use or cover types. Classification stage was performed using Fuzzy Maximum Likelihood Estimation (FMLE) clustering algorithm. FMLE algorithm allows for ellipsoidal clusters of arbitrary extent and is consequently more flexible than standard Fuzzy K-Means clustering algorithm. Hoever, basic FMLE algorithm makes use exclusively the spectral (or intensity) properties of the individual pixel vectors and spatial-contextual information of the image was not taken into account. Hence, poor(noisy) classification result is ussualy obtained from SAR data due to speckle noise. In this paper, we propose a modified FMLE which integrate basic FMLE clustering with spatial-contextual information by statistical analysis of local neightbourhoods. The effectiveness of the proposed method was demonstrated using E-SAR polarimetric data acquired on the area of Penajam, East Kalimantan, Indonesia. Result showed classified images improving land-cover discrimination performance. Exhibiting homogeneous region, and preserving edge and other fine structures. Keywords: Cloudes polarimetric decomposition, FMLE clustering, polarimetric coherence, Polarimetric-SAR, unsupervised classification.
CLASSIFICATION OF POLARIMETRIC-SAR DATA WITH NEURAL NETWORK USING COMBINED FEATURES EXTRACTED FROM SCATTERING MODELS AND TEXTURE ANALYSIS Katmoko Ari Sambodo; Aniati Murni; Mahdi Kartasasmita
International Journal of Remote Sensing and Earth Sciences (IJReSES) Vol 4,(2007)
Publisher : National Institute of Aeronautics and Space of Indonesia (LAPAN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (911.919 KB) | DOI: 10.30536/j.ijreses.2007.v4.a1212

Abstract

This paper shows a study on an alternative method for classification of polarimetric-SAR data. The method is designed by integrating the comined features extracted from two scattering models(i.e., freeman decomposition model and cloud decomposition model) and textural analysis with distribution-free neural network classifier. The neural network classifier (wich is based on a feedforward back-propagation neural network architecture) properly exploits the information in the combined features for providing high accuracy classification result. The effectiveness of the proposed method is demonstrated using E-SAR polarimetric data acquired on the area of Penajam, East Kalimantan, Indonesia. Keywords: Polarimetric-SAR, scattering model, freeman decomposition, Cloude decomposition, texture analysis, feature extraction, classification, neural networks.
bahasa inggris Muhammad Iqbal Izzul Haq; Aniati Murni Arymurthy; Irham Muhammad Fadhil
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 3 (2022): Juni 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (369.564 KB) | DOI: 10.29207/resti.v6i3.3993

Abstract

Class imbalance is a serious problem that disrupts the process of semantic segmentation of satellite imagery in urban areas in Earth remote sensing. Due to the large objects dominating the segmentation process, small object are consequently limited, so solutions based on optimizing overall accuracy are often unsatisfactory. Due to the class imbalance of semantic segmentation in Earth remote sensing images in urban areas, we developed the concept of Down-Sampling Block (DownBlock) to obtain contextual information and Up-Sampling Block (UpBlock) to restore the original resolution. We proposed an end-to-end deep convolutional neural network (DenseU-Net) architecture for pixel-wise urban remote sensing image segmentation. this method to segmentation the small object in satellite imagery.The accuracy of the small object class in this study was further improved using our proposed method. This study used data from the Massachusetts Buildings dataset using Dense U-Net method and obtained an overall accuracy of 84.34%.