Zahriladha Zakaria
Universiti Teknikal Malaysia Melaka

Published : 15 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : Indonesian Journal of Electrical Engineering and Computer Science

Novel Artificial Magnetic Conductor for 5G Application Maizatun Muhamad; Maisarah Abu; Zahriladha Zakaria; Hasnizom Hassan
Indonesian Journal of Electrical Engineering and Computer Science Vol 5, No 3: March 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v5.i3.pp636-642

Abstract

A design of novel bendable Artificial Magnetic Conductor (AMC) structures has been presented in this paper in two selected of frequencies at 5G application. These designs started with a square patch shape and continued with the combination of circular and Jerusalem shape which resonate at a frequency of 18 GHz and 28 GHz. Details of the theory and the structures of AMCs are explained. The reflection phase, bandwidth, angular stability and dispersion diagram were studied. The simulated results plotted that the novel AMC has good bandwidth and size is reduced by 53 percent and 55 percent for both frequencies. Other than that, it is also proved that the novel AMC has a stable reflection phase and no band gap performs at the specific frequency. The good performances of this novel AMC make it useful in order to improve antenna’s performance.
Microwave Bandpass Filter Integrated with Notch Response for Wide-band Applications Mussa Mabrok; Zahriladha Zakaria; Nurhana Abu Hussin; Mohamad Ariffin Mutalib
Indonesian Journal of Electrical Engineering and Computer Science Vol 11, No 2: August 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v11.i2.pp797-804

Abstract

This paper presents the design of wide-band bandpass filter using microstrip structure at 3-6GHz with fractional bandwidth of 66.67% based upon short-circuited stubs structure of 5th degree. In order to avoid the interference from existing system that operates in the frequency band, the folded stepped impedance resonator (SIR) was introduced to generate a narrow notch band at 5.2GHz. Pin diode is employ as switching mechanism for the notch response. This design is simulated by Advance Design System (ADS) software and using Roger Duroid 4350B with a dielectric constant of 3.48, substrate thickness 0.508mm and loss tangent 0.0019.The achieved return loss is better than 15dB and insertion loss is less than 1dB.The designed filter can be used in microwave communication systems such as wireless communication devices and military applications (radar system).
Microwave Planar Sensor for Permittivity Determination of Dielectric Materials Rammah Alahnomi; Natasha Binti Abd Hamid; Zahriladha Zakaria; Tole Sutikno; Amyrul Azuan Mohd Bahar
Indonesian Journal of Electrical Engineering and Computer Science Vol 11, No 1: July 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v11.i1.pp362-371

Abstract

This paper presents a single port rectangular ring resonator sensor for material characterizations. The proposed sensor is designed at operating resonance frequency of 4 GHz. The sensor consists of micro-strip transmission line and ring resonator with applying the enhancement method to the coupling gaps. The using of enhancement method is to improve the return loss of the sensor and sensitivity in terms of Q-factor, respectively. Furthermore, the proposed sensor is designed and fabricated on Roger 5880 substrate. Standard materials with known permittivity have been used in order to validate the sensor’s sensitivity. Based on the results, the percentage of error for the proposed rectangular sensor is 0.2% to 8%. It can be demonstrated that the proposed sensor will be useful for various applications such as medicine, bio-sensing and food industry.
Investigation of microwave sensor and integrate with polydimethylsiloxane for medical imaging application Nurhasniza Edward; Lavanya Paramasivam; Zahriladha Zakaria; Amyrul Azuan Mohd Bahar
Indonesian Journal of Electrical Engineering and Computer Science Vol 24, No 2: November 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v24.i2.pp949-956

Abstract

The small-sized wideband antenna is one of the antennas used in the medical field to detect body tissue. The antenna's direct contact with the human body causes reflected signal due to the high body coupling, and the narrower bandwidth tends to reduce the data transfer rate in transmission. Therefore, this paper aims to design a wideband antenna with wearable properties operated in the frequency range of 3 GHz to 6 GHz. The antenna is designed with a rectangular-shaped patch with notches and the t-slot shaped partial slot ground. The connected speech test (CST) studio suite software is used to design and optimize the miniature antenna, which measures 24 mm (W) x 38 mm (L) x 0.168 mm (H). The antenna is then embedded with polydimethylsilixane (PDMS) at the top half of the antenna with the dimension 24 mm (W) x 19 mm (L) x 1 mm (H) and also fully occupied. The antenna is configured with the bending capabilities to adapt the human body surface at an angle of 30º. The antenna is having the benefits of small size, cost-effective, and easy to fabricate. The antenna design can effectively detect unusual body tissue, and it safe to be used.