Claim Missing Document
Check
Articles

Found 4 Documents
Search

The comparison of dual axis photovoltaic tracking system using artificial intelligence techniques Machrus Ali; Aji Akbar Firdaus; Hamzah Arof; Hidayatul Nurohmah; Hadi Suyono; Dimas Fajar Uman Putra; Muhammad Aziz Muslim
IAES International Journal of Artificial Intelligence (IJ-AI) Vol 10, No 4: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijai.v10.i4.pp901-909

Abstract

In this paper, the efficiency of photovoltaic panels is improved by adding a sun tracking system. The solar tracking system is used for tracking the sun so that photovoltaic always faces the sun. This system uses a dual axis consisting of horizontal rotation axis and a vertical rotation axis. The horizontal rotational axis motion is to follow the azimuth angle of the sun from north to south. Then, to follow the sun's azimuth angle from east to west is the vertical axis motion. Both types of movements are controlled using a PID controller that is optimized with an artificial intelligence approach, namely particle swarm optimization (PID-PSO), firefly algorithm (PID-FA), imperialist competitive algorithm (PID-ICA), bat algorithm (PID-BA), and ant colony optimization (PID-ACO). Experiments of various approaches were carried out and the corresponding performance compared. The experimental results show that PID-BA performs best in terms of settling time and overshoot. The results also allow the comparison of different PID controller and the calculation of the fastest completion time.
Dual-Wavelength Thulium Ytterbium Co-Doped Fiber Laser Hazlihan Haris; Ahmad Razif Muhammad; Norazlina Saidin; Mohd Shahnan Zainal Abidin; Hamzah Arof; Mukul Chandra Paul; Sulaiman Wadi Harun
Indonesian Journal of Electrical Engineering and Computer Science Vol 8, No 2: November 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijeecs.v8.i2.pp457-461

Abstract

We report on the generation of dual-wavelength fiber laser peaking at 1990.64 and 1998.92 nm with a simple ring cavity setup. The lasers are demonstrated using a fabricated silica-based nano-engineered octagonal shaped double-clad Thulium-Ytterbium co-doped fiber (TYDF) as a gain medium in a simple all-fiber ring configuration. By using 980 nm multimode laser, a stable dual-wavelength laser is generated at a threshold pump power of 1500 mW due to the non-polarization rotation (NPR) effect occurred in the cavity. The effect has been self-controlled by a suppression of mode competition in the gain medium. The result shows that the slope efficiency of the generated dual–wavelength laser is measured to be 27.23%. This dual-wavelength TYDF laser operated steadily at room temperature with a 34 dB optical signal-to-noise ratio. Keywords: Dual-wavelength fiber laser, nano-engineered glass, silica-based TYDF, NPR effect.
An internet of things-based touchless parking system using ESP32-CAM Vicky Andria Kusuma; Hamzah Arof; Sena Sukmananda Suprapto; Bambang Suharto; Rizky Amalia Sinulingga; Fadli Ama
International Journal of Reconfigurable and Embedded Systems (IJRES) Vol 12, No 3: November 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijres.v12.i3.pp329-335

Abstract

As technology continues to advance, governments around the world have implemented health protocols to minimize direct contact between individuals and objects, in response to the ongoing COVID-19 outbreak. To address this need, a touchless parking portal was designed using a microcontroller-based and internet of things (IoT) -based system, with the Arduino UNO microcontroller device serving as the core component. The system employs an ultrasonic sensor HC-SR04 and passive infrared (PIR) to detect vehicles as they arrive at the portal area, in addition to requiring an ESP32-CAM camera, servo motor, light-emitting diode (LED), I2C 16x2 liquid crystal display (LCD), push button, universal serial bus (USB) to transistor-transistor logic (TTL) converter, power supply, and portal bar. The system builder software was developed using Arduino integrated development environment (IDE), Android, and Blynk. The authors conducted thorough testing and analysis of the system, concluding that its overall performance reaches 100%. Nevertheless, despite the extensive experimentation conducted, there remains a possibility that certain factors could still affect the results. Therefore, caution is advised when interpreting the outcomes of this experiment.
Improved load frequency control performance by tuning parameters of PID controller and BESS using Bat algorithm Dimas Fajar Uman Putra; Aji Akbar Firdaus; Hamzah Arof; Novian Patria Uman Putra; Vicky Andria Kusuma
Bulletin of Electrical Engineering and Informatics Vol 12, No 5: October 2023
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v12i5.4548

Abstract

The oscillation of frequency can cause the generator to run out of sync in a power system. Therefore, load frequency control (LFC) is needed to reduce frequency oscillation and prevent out of sync operation. The LFC regulates the governor to balance the turbine speed with changes in the load of existing. In this paper, a proportional integral differential (PID) controller and a battery energy storage system (BESS) are added to an LFC to improve the frequency stability of a power system. The parameters of the PID controller and BESS are optimized using the Bat algorithm (BA) to attain a good coordination. The frequency performance analysis is done by introducing disturbance in the form of changes in load power. The simulation results show that the frequency deviation of the system with the PID controller and BESS, has a faster settling time and smaller overshoot value. The system performs better than those with only the PID controller or the BESS. In conclusion, the BA algorithm can be used to find optimal parameter values of the PID controller and BESS for a synchronized coordination of an LFC.