Claim Missing Document
Check
Articles

Found 4 Documents
Search

Non-uniform Rooftop PVs Distribution Effect to Improve Voltage Profile in Residential Feeder Zamzami Zamzami; Nelly Safitri; Fauzi Fauzi
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 4: August 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i4.7789

Abstract

This paper presents the simple design of a grid-tied single-phase with distributed rooftop photovoltaic (PV) non-uniformly location and ratings. All the inclusion components in the developed scheme are estimated and defined as the inevitability of low voltage (LV) residential network. This developed scheme is purposed for allocating AC and DC load, which are divided into four steps: the sized determination of PV inverter (1-5kW), the selection of PV array, the size determination of battery and the selection of other supporting components. The purposed configuration consists of modeling the system with non-uniform distributions of rooftop PVs, modeling the rooftop PVs based on their injected active and reactive power, and finally the inclusion of battery storage, based on its state of charge (SOC). Due to test the configuration, several cases are built in the MATLAB platform. Simulation results have been generated and analyzed for an unbalanced three-phase residential feeder which is populated with rooftop PVs and battery storage (BS). The simulation results show that the unbalanced reduction due to the coordinate of PVs and BS that provided educated energy storage when the unequal loadings are there, have significant effect toward the anxiety of the distribution network are successfully done.
Integrated arrangement of advanced power electronics through hybrid smart grid system Nelly Safitri; A. M. Shiddiq Yunus; Fauzi Fauzi; Naziruddin Naziruddin
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.13433

Abstract

As an enabler component for renewable energy integration, power electronics (PE) technology in smart grid system is one of the most important issues of development the electrification, decentralization and information-technology/operation-technology (IT/OT) digitization within the electrical energy transmission and distribution systems. The arrangement of PE may different along the feeder either for grid-connected photovoltaic (PV), wind turbine, fuel cells, wave energy system and battery storage unit, respectively.This is due to the electric voltage that might need to be converted from alternating current (AC) to direct current (DC) and vice versa. For that reason, this paper proposed a concept of advanced PE as an integrated arrangement of several AC/DC/AC-and DC/AC- converters in such ways that support thepreviously mentioned grid-connected hybrid renewable energy sources and distributed generators (DGs) along the distribution feeder. Additionally, for the system that supported by battery storage unit, then this hybrid smart grid concept might become the answer for future utility needs.
Perbaikan Tegangan Ujung Pada Jaringan Distribusi 20 kV Di GH Tangse ULP Beureunuen Subhan Subhan; Fauzi Fauzi; Teuku Murisal Asyadi; Syukri Syukri; Muliadi Muliadi
Jurnal Teknologi Terpadu Vol 11, No 1 (2023): JTT (Jurnal Teknologi Terpadu)
Publisher : Pusat Penelitian dan Pengabdian Kepada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.32487/jtt.v11i1.1570

Abstract

Jaringan sistem distribusi tenaga listrik merupakan media untuk mendistribusikan energi listrik baik ke industri, maupun pelanggan rumah tangga. Bertambahnya pertumbuhan penduduk maka pengguna atau pelanggan energi listrik juga bertambah sehingga dapat berdampak terhadap pembebanan pada setiap transformator distribusi. Kondisi jaringan distribusi yang tidak optimal akan mengakibatkan pelayanan yang kurang efektif, karena akibat terjadinya jatuh tegangan. Permasalahan yang dihadapi sekarang adalah ketika beban puncak tegangan yang sampai pada GH Tangse sebesar 17,9 kV dengan keadaan SG-11 yang menyuplai untuk 2 penyulang yaitu penyulang kota tangse dan penyulang geumpang dengan beban puncak 2,4 MW dan memiliki 70,72 kms dari GI Sigli. Penambahan Incoming SG-14 dan pengalihan beban pada Incoming SG-14 maka mampu mencukupi suplai beban yang ada pada 2 penyulang kota tangse dan penyulang geumpang, tegangan terima pada Gardu Hubung Tangse menjadi baik dan menaikkan tegangan dari 17,900  kV menjadi 19,760 kV pada SG-11 dengan melakukan perhitungan menggunakan software E-tap.
Gas Turbine Maintenance Optimizing using the Reliability-Centered Maintenance Method Darmein Darmein; Marzuki Marzuki; Zuhaimi Zuhaimi; Fauzi Fauzi; Nurlaili Nurlaili; Luthfi Luthfi
Jurnal POLIMESIN Vol 21, No 1 (2023): February
Publisher : Politeknik Negeri Lhokseumawe

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30811/jpl.v21i1.3281

Abstract

Gas Turbine is one of the important equipment in the production process in the oil and gas industry. This equipment is used as the prime mover of the compressor to the gas supply. The company has implemented preventive maintenance and condition monitoring in the context of gas turbine maintenance as well as scheduled shutdown every 52,000 hours of operation time. Along with efforts to increase production, the company's management policy has implemented a gas turbine maintenance efficiency program from 52,000 hours to 72,000 hours of operation. This policy is based on the consideration that productivity decreases over time and component replacement during MI (Major Inspection) and HGPI (Hot Gas Path inspection). This policy will certainly have an impact on the reliability, performance, and failure rate that will be experienced by gas turbines as well as their impact on maintenance costs. This study aims to recommend optimal maintenance strategies for gas turbines using the Reliability Centered Maintenance (RCM) method related to availability, reliability, maintainability, and maintenance costs. In this study, an analysis of the causes and effects of failure was carried out using the Failure Mode and Effect Analysis (FMEA) method, with the parameters of failure frequency and consequences of failure then analyzed using the RCM worksheet to determine an effective maintenance strategy.  The results of this study obtained maintenance strategy for Gas Turbine components which are Failure finding, Redesign on conditioning, and Schedule discard task. The components that are scheduled for repairs are compressors and turbines and components that receive a component replacement schedule are Air Inlet and Combustion. The application of the RCM method has been able to reduce maintenance costs by up to 30.678% along with reduced downtime rates, decreased failure rates and the number of MTTR hours