Claim Missing Document
Check
Articles

Found 35 Documents
Search

Classification Model of Consumer Question about Motorbike Problems by Using Naïve Bayes and Support Vector Machine Wicaksana, Ekky; Murdiansyah, Danang Triantoro; Kurniawan, Isman
Indonesian Journal on Computing (Indo-JC) Vol. 6 No. 2 (2021): September, 2021
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2021.6.2.561

Abstract

The motorbike plays an important role in supporting daily activity. The motorbike is known as one of the transportation modes that is frequently used in Indonesia. The number of motorbikes used in Indonesia is continuously increasing time by time. Hence, the occurrence of motorbike problems can affect community activity and disturb the economic condition in society. Since the problem of the motorbike can occur at any time, a prevention action is required by providing an online consultation platform. However, a classification model is required to handle a wide range of questions about the motorbike problem. By classifying those questions into a specific class of problems, the solution can be delivered to the consumer faster. In this study, we developed prediction models to classify consumer questions. The data set was collected from consumer questions regarding motorbike problems that are commonly occurring. The model was developed using two machine learning algorithms, i.e., Naïve Bayes and Support Vector Machine (SVM). Text vectorization was performed by using the n-gram and term frequency-inverse document frequency (TF-IDF) method. The results show that the SVM model with the uni-trigram model performs better with the value of accuracy and F-measure, which are 0.910 and 0.910, respectively.
Gastroesophageal Reflux Disease Early Detection using XGBoost Method Classifier Wisesty , Untari Novia; Delfina, Haura Adzkia; Kurniawan, Isman
Jurnal Teknik Informatika (Jutif) Vol. 6 No. 2 (2025): JUTIF Volume 6, Number 2, April 2025
Publisher : Informatika, Universitas Jenderal Soedirman

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52436/1.jutif.2025.6.2.4143

Abstract

Gastroesophageal reflux disease (GERD) is a clinical condition that occurs when the gastric content within the stomach rises into the esophagus. If left untreated, GERD can result in complications such as esophageal inflammation, ulcers, and even cancer. In this study, the early detection of GERD is performed using the GERD dataset obtained from the Harvard Dataverse online repository and processed with the XGBoost machine learning model. The SMOTE technique was implemented as a solution to address the data imbalance present in the dataset. In addition, this study applied Principal Component Analysis (PCA) and Pearson Correlation to select the most relevant attributes, with the aim of improving computational efficiency. The results demonstrated that feature selection through Pearson correlation and feature extraction using principal component analysis (PCA) yielded the optimal model performance when utilizing 16 attributes and 16 principal components, respectively. The XGBoost model with PCA achieves a macro average F1-score of 0.9615, while the XGBoost model with Pearson Correlation attains a value of 0.9809. Subsequently, the XGBoost model based on the original dataset yielded a macro F1-score value of 0.9568. The findings of this research indicate that the XGBoost model with the Pearson Correlation-based feature selection method has a better f1-score value than the feature extraction method with PCA or based on the original dataset with a difference in value of 0.0194 and 0.0241 respectively in enhancing the performance of the XGBoost model for early detection of GERD in this study.
Model Klasifikasi berbasis Ekspresi Gen Non-Small Cell Lung Carcinoma (NSCLC) pada Wanita Bukan Perokok Menggunakan Metode Ensemble Azizah, Kholishoh Nur; Kurniawan, Isman; Nhita, Fhira
LOGIC: Jurnal Penelitian Informatika Vol. 1 No. 1 (2023): September 2023
Publisher : Universitas Telkom

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25124/logic.v1i1.6389

Abstract

Kanker paru-paru adalah penyebab utama kematian terkait kanker di seluruh dunia dan membawa dampak sosial ekonomi yang signifikan bagi pasien, keluarga, dan masyarakat secara keseluruhan. Dalam diagnosis kanker, klasifikasi berbagai jenis tumor sangat penting. Prediksi akurat dari berbagai jenis tumor memungkinkan untuk pengobatan yang lebih baik dan meminimalkan toksisitas pada pasien. Untuk menganalisis masalah klasifikasi kanker menggunakan data ekspresi gen, untuk pemilihan fitur dan model prediksi. Penelitian ini bertujuan untuk memprediksi NSCLC dengan menerapkan metode ensemble pada data microarray. Penulis menggunakan tiga metode ensemble untuk memprediksi NSCLC, yaitu Random Forest, Adaptive Boosting (AB), dan Extreme Gradient Boosting (XG). Seleksi fitur dilakukan menggunakan variance threshold dan parameter chi-square kemudian dilanjutkan dengan membangun model prediksi menggunakan ensemble. Hasil validasi model terbaik berdasarkan yang terdiagnosis kanker yaitu model AB dengan 10 fitur, XG dengan 10 fitur, dan XG dengan 20 fitur yang menghasilkan nilai accuracy, recall, dan f1-score yang sama berturut-turut yaitu 0.93, 1.00, dan 0.93.
Implementasi Metode Support Vector Machine (SVM) pada Model Prediksi Rating Obat Berdasarkan Ulasan Pasien Jayanata, Wisnu; Kurniawan, Isman
LOGIC: Jurnal Penelitian Informatika Vol. 1 No. 1 (2023): September 2023
Publisher : Universitas Telkom

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25124/logic.v1i1.6410

Abstract

Pesatnya perkembangan internet dan media sosial mengakibatkan membaca ulasan sebelum membeli suatu produk, terutama produk obat menjadi hal yang lumrah. Namun, jumlah ulasan yang banyak dan tersebar mengakibatkan kesulitan dalam melakukan penilaian kualitas produk obat. Oleh karena itu, sistem yang dapat membantu pelanggan dalam menghadapi kendala ini sangat dibutuhkan. Pada pemodelan sistem, digunakan TF-IDF untuk mereduksi fitur dan Support Vector Machine sebagai metode klasifikasi. Dilakukan puka Hyperparameter Tuning untuk meningkatkan performa sistem. Pada penelitian ini didapat bahwa polynomial merupakan kernel SVM yang paling optimal untuk memprediksi rating obat berdasarkan ulasan pasien dengan akurasi mencapai 75.00% dan f-1 score sebesar 74.23%.
In Silico and In Vivo Approaches to Exploring the Antidiabetic of Vegetable Fern (Diplazium esculentum S.) Iljannah, Nissa; Sapitri, Nazwa Martina; Rizki, Alfath Muhammad; Yuningsih, Lela Mukmilah; Khumaisah, Lela Lailatul; Kurniawan, Isman
Jurnal Kimia Riset Vol. 10 No. 2 (2025): December
Publisher : Universitas Airlangga, Campus C Mulyorejo, Surabaya, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20473/jkimris.v10i2.73695

Abstract

Diabetes mellitus (DM) is a chronic metabolic disease characterized by increased blood glucose levels (hyperglycemia). Efforts to treat and prevent DM are made by using antidiabetics, usually synthetic drugs. However, continuous use may cause side effects. Other alternatives are needed to handle DM by utilizing plants as antidiabetics, such as the vegetable fern (Diplazium esculentum S.). Therefore, this research aims to analyze the components of a vegetable fern leaf extract and determine its effectiveness as an antidiabetic through in silico and in vivo assays. The sample was macerated using 98% ethanol for 3x24 hours. Phytochemical screening and LC-MS/MS analysis were performed on the extract. In vivo studies were conducted on mice with extract doses of 200, 400, and 600 mg/BW along with positive (Glibenclamide) and negative controls. An in silico study was conducted by molecular docking against the ɑ-glucosidase receptor with PDB ID 5KZW, which was docked to 18 compounds from the extract. The analysis revealed that the D. esculentum S. leaf extract contained 22 compounds, including flavonoids, terpenoids, steroids, and phenolics. The best dosage for the in vivo antidiabetic efficacy assays was 400 mg/BW of extract, which significantly reduced glucose levels for 21 days, reaching 30%, which was better than Glibenclamide's 27%. Based on in silico tests, the molecules kaempferol 3-rhamno-glucoside and 4,4-Bis[2,2-bis(4-methoxyphenyl)vinyl]biphenyl had the highest affinity, with a value of -6.3 kcal/mol. Dantaxusin A and Phorone A came in second and third, respectively, with -6.0 and -5.9 kcal/mol. These results suggest the potential antidiabetic effects of D. esculentum S. leaf extract.