Claim Missing Document
Check
Articles

Image Spoofing Detection Using Local Binary Pattern and Local Binary Pattern Variance Indra Bayu Kusuma; Arida Kartika; Tjokorda Agung Budi W; Kurniawan Nur Ramadhani; Febryanti Sthevanie
International Journal on Information and Communication Technology (IJoICT) Vol. 4 No. 2 (2018): December 2018
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/IJOICT.2018.42.134

Abstract

Particularly in the field of biometric security using human face has been widely implemented in the real world. Currently the human face is one of the guidelines in the security system. Nowadays the challenge is how to detect data falsification; such an attack is called spoofing. Spoofing occurs when someone is trying to pretend to be someone else by falsifying the original data and then that person may gain illegal access and benefit him. For example one can falsify the face recognition system using photographs, video, masks or 3D models. In this paper image spoofing human face detection using texture analysis on input image is proposed. Texture analysis used in this paper is the Local Binary Pattern (LBP) and Local Binary Pattern Variance (LBPV). To classified input as original or spoof K-Nearest Neighbor (KNN) used. Experiment used 5761 spoofs and 3362 original from NUAA Imposter dataset. The experimental result yielded a best success rate of 87.22% in term of accuracy with configuration of the system using LBPV and histogram equalization with ratio 𝑅 = 7 and 𝑃 = 8.
Pengenalan Logo Kendaraan Menggunakan Metode Local Binary Pattern dan Random Forest Alda Putri Utami; Febryanti Sthevanie; Kurniawan Nur Ramadhani
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 4 (2021): Agustus 2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (435.273 KB) | DOI: 10.29207/resti.v5i4.3085

Abstract

The vehicle logo is one of the features that can be used to identify a vehicle. Even so, a lot of Intelligent Transport System which are developed nowadays has yet to use a vehicle logo recognition system as one of its vehicle identification tools. Hence there are still cases of traffic crimes that haven't been able to be examined by the system, such as cases of counterfeiting vehicle license plates. Vehicle logo recognition itself could be done by using various feature extraction and classification methods. This research project uses the Local Binary Pattern feature extraction method which is often used for many kinds of image recognition systems. Then, the classification method used is Random Forest which is known to be effective and accurate for various classification problems. The data used for this study were as many as 2000 vehicle logo images consisting of 5 brand classes, namely Honda, Kia, Mazda, Mitsubishi, and Toyota. The results of the tests carried out obtained the best accuracy value of 88.89% for the front view logo image dataset, 77.03% for the side view logo image dataset, and 83% for the dataset with both types of images.
Big Cats Classification Based on Body Covering Fernanda Januar Pratama; Wikky Fawwaz Al Maki; Febryanti Sthevanie
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 5 No 5 (2021): Oktober2021
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (442.897 KB) | DOI: 10.29207/resti.v5i5.3328

Abstract

The reduced habitat owned by an animal has a very bad impact on the survival of the animal, resulting in a continuous decrease in the number of animal populations especially in animals belonging to the big cat family such as tigers, cheetahs, jaguars, and others. To overcome the decline in the animal population, a classification model was built to classify images that focuses on the pattern of body covering possessed by animals. However, in designing an accurate classification model with an optimal level of accuracy, it is necessary to consider many aspects such as the dataset used, the number of parameters, and computation time. In this study, we propose an animal image classification model that focuses on animal body covering by combining the Pyramid Histogram of Oriented Gradient (PHOG) as the feature extraction method and the Support Vector Machine (SVM) as the classifier. Initially, the input image is processed to take the body covering pattern of the animal and converted it into a grayscale image. Then, the image is segmented by employing the median filter and the Otsu method. Therefore, the noise contained in the image can be removed and the image can be segmented. The results of the segmentation image are then extracted by using the PHOG and then proceed with the classification process by implementing the SVM. The experimental results showed that the classification model has an accuracy of 91.07%.
MODIFIKASI FUNGSI DENSITY PADA ALGORITMA ANT CLUSTERING Kurniawan Nur Ramadhani; Febryanti Sthevanie
Jurnal Ilmiah Teknologi Infomasi Terapan Vol. 1 No. 2 (2015)
Publisher : Universitas Widyatama

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (393.535 KB) | DOI: 10.33197/jitter.vol1.iss2.2015.55

Abstract

[INA]Clustering merupakan salah satu tugas dalam data mining untuk mengelompokkan data berdasarkan kemiripan karakteristik. Pada penelitian ini, akan diusulkan sebuah modifikasi pada algoritma Ant Clustering untuk mempercepat proses komputasi. Modifikasi dilakukan pada fungsi density dengan mempertimbangkan batasan pemisahan spasial. Dari hasil percobaan yang dilakukan dengan data sejumlah 800 baris dan jumlah iterasi sebanyak 1000, didapatkan bahwa modifikasi fungsi density pada algoritma Ant Clustering berhasil meningkatkan kecepatan dengan nilai akurasi yang tidak terlalu berbeda dengan algoritma Ant Clustering standar.[EN]Clustering is one of the tasks in data mining to group data based on similar characteristics. In this study, will be proposed a modification on Ant Clustering algorithm to speed up the process of computing. Modifications carried on by considering the density function limits the spatial separation. From the results of experiments conducted with a number of data lines 800 and the number of iterations of 1000, it was found that the density modification function on Ant Clustering algorithms managed to increase the speed with accuracy values that are not too different from Ant Clustering algorithm standard.
Pengenalan Batik Indonesia Menggunakan Ciri Warna dan Tekstur Ema Rachmawati; Maula Ilma Ahgnia Dwi Anjani; Febryanti Sthevanie
IJAI (Indonesian Journal of Applied Informatics) Vol 4, No 2 (2020)
Publisher : Universitas Sebelas Maret

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20961/ijai.v4i2.41591

Abstract

Upaya pelestarian budaya bangsa melalui pengenalan batik merupakan hal yang harus selalu ditingkatkan. Terlebih dengan diakuinya budaya batik Indonesia oleh UNESCO sebagai bagian dari warisan budaya tak berwujud (intangible). Hal inilah yang mendasari dilakukannya sejumlah penelitian terkait pengenalan batik. Hasil kinerja yang sangat baik telah dicapai oleh berbagai sistem pengenalan batik. Namun, berbagai penelitian yang dilakukan tersebut masih terbatas pada jumlah motif batik yang sedikit. Oleh karena itu, pada penelitian ini dibangun sistem pengenalan batik dengan menggunakan 114 motif batik dari 14 daerah di propinsi Jawa Barat. Ciri gabungan dibangun dengan mengkombinasikan ciri tekstur dan warna. Ciri tekstur didapatkan dari Gray Level Co-occurrence Matrix (GLCM) sedangkan ciri warna didapatkan dari Color Difference Histogram (CDH). Penulis juga menambahkan variasi dalam dataset yang berupa rotate dan flip untuk memperbesar variasi intra-class. Hasil utama dari kinerja sistem yang dibuat adalah akurasi sebesar 99,128 % dan F1-Score sebesar 98,9999% pada pengenalan batik berdasarkan daerah, sedangkan pada pengenalan batik berdasarkan motif didapatkan akurasi sebesar 98,2456% dan F1-Score  sebesar 98,3208%.  
Pengembangan Situs Web Sebagai Pembaharu Media Informasi Taman Kanak-Kanak Islam Terpadu (TKIT) Luqmanul Hakim Bandung Gia Septiana Wulandari; Febryanti Sthevanie; Mahmud Dwi Sulistiyo
I-Com: Indonesian Community Journal Vol 2 No 2 (2022): I-Com: Indonesian Community Journal (Agustus 2022)
Publisher : Fakultas Sains Dan Teknologi, Universitas Raden Rahmat Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (789.317 KB) | DOI: 10.33379/icom.v2i2.1505

Abstract

TKIT Luqmanul Hakim merupakan taman kanak-kanak di kota Bandung yang berada di bawah naungan Yayasan Pendidikan Luqmanul Hakim. Di masa pandemi yang melanda dunia sejak dua tahun lalu, kebutuhan akan informasi yang tersedia secara daring semakin meningkat, baik bagi pihak sekolah maupun orangtua. Kebutuhan tersebut dirasakan pula oleh orang tua calon siswa yang sedang mencari sekolah untuk anaknya, sebagai bahan pertimbangan pemilihan sekolah bagi anaknya. Akan tetapi, TKIT Luqmanul Hakim Bandung sampai sekitar pertengahan tahun 2022 masih belum memiliki situs web yang dapat diakses orang tua/wali siswa/calon siswa. Oleh karena itu, untuk memperluas persebaran informasi dari pihak sekolah, Tim Abdimas dari Fakultas Informatika, Universitas Telkom menerapkan metode hibah teknologi tepat guna dengan cara membangun sebuah situs web resmi untuk TKIT Luqmanul Hakim dengan menggunakan framework Laravel. Untuk keberlanjutan pengelolaan situs web ini, disediakan pula halaman untuk Administrator dan dilaksanakan pelatihan pengelolaan situs web untuk para guru TKIT Luqmanul Hakim. Kegiatan ini mendapat sambutan positif dari berbagai pihak dan sedang dirasakan manfaatnya secara nyata, serta terus diupayakan pengelolaannya sehingga informasi yang disajikan senantiasa aktual.
Video Based Fire Detection Method Using CNN and YOLO Version 4 Muhammad Salman Farhan; Febryanti Sthevanie; Kurniawan Nur Ramadhani
Indonesia Journal on Computing (Indo-JC) Vol. 7 No. 2 (2022): August, 2022
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2022.7.2.654

Abstract

Fire detection is one of the technological efforts to prevent fire incidents. This is very important because the damage caused by fires can be minimized by having a fire detector. There are two types of fire detection, namely traditional-based and computer vision-based. Traditional-based fire detection has many shortcomings, one of which requires a close fire distance for activation. Hence, computer vision-based fire detection is made to cover the shortcomings of traditional-based fire detection. Therefore, in this study, we propose a video-based fire detection using a Convolutional Neural Network (CNN) Deep Learning approach supported by You Only Look Once (YOLO) object detection model version four. This study uses a dataset of various fire scenarios in the form of images and videos. The fire detection built in this study has an accuracy of above 90% with an average detection speed of 34.17 Frame Per Second (FPS).
Fire Detection on Video Using ViBe Algorithm and LBP-TOP Kurniawan Nur Ramadhani; Febryanti Sthevanie; Gamma Kosala; Ketut Sudyatmika Putra
Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) Vol 6 No 6 (2022): Desember 2022
Publisher : Ikatan Ahli Informatika Indonesia (IAII)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.29207/resti.v6i6.4164

Abstract

In this research, we built a system to detect fire using the ViBe (Visual Background Extractor) algorithm to extract dynamic targets. The ViBe algorithm is better at detecting moving target objects such as flame combustion. In this research we combined the ViBe algorithm with three frame differencing to gain better results on movement object. The HSI color space model was applied after the movement object was obtained. We used Local Binary Pattern-Three Orthogonal Planes to obtain the feature extraction to be classified with Support Vector Machine. Our result has shown that the proposed system were able to detect the fire using the LBP-TOP and ViBe algorithm methods with an average accuracy rate of 88.10%, and the best accuracy was 90.37%. The parameters used to achieve this accuracy in the feature extraction process were T=120, Radius=2, and frame gap=15, then the threshold value parameter for three-frame difference parameter was 25.
Deteksi Copy-move Pada Pemalsuan Citra Menggunakan Local Binary Pattern Dan Svd-matching Dian Masmawati; Tjokorda Agung Budi Wirayuda; Febryanti Sthevanie
eProceedings of Engineering Vol 2, No 3 (2015): Desember, 2015
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Image Forgery merupakan tindakan pemalsuan citra yang dilakukan secara illegal. Pemalsuan Citra juga dapat didefinisikan sebagai proses manipulasi dari suatu citra digital untuk menyembunyikan beberapa informasi yang penting ada suatu citra. Salah satu metode manipulasi citra yang paling umum digunakan adalah Copy-move. Dengan adanya berbagai perangkat lunak pengolahan citra seperti Photoshop, pemalsuan citra sangat mudah dilakukan. Oleh karena itu, dibutuhkanlah suatu cara untuk mendeteksi pemalsuan citra. Pada tugas akhir ini dilakukan deteksi copy-move pada pemalsuan citra digital dengan menggunakan metode Local Binary Pattern (LBP) dan SVD-matching. Dengan menggunakan kedua metode tersebut dilakukan pencocokan antar blok-blok piksel citra. Berdasarkan hasil penelitian yang dilakukan, menunjukan bahwa dengan menerapkan metode ini dihasilkan suatu metode yang dapat mendeteksi copy-move pada pemalsuan citra. Tingkat akurasi sistem terbaik yang diperoleh dari pengujian berbasis area mencapai 62.33% kemudian sistem mampu mendeteksi citra copymove dan citra asli dengan baik karena memiliki akurasi mencapai 81.7% dan mempunyai nilai TPR dan TNR sebesar 0.800 ketika threshold stabil yang digunakan adalah 0.0051. Kata Kunci : Image forgery, copy-move, citra, deteksi, Local Binary Pattern (LBP), SVD-matching
Analisis dan Penerapan Perhitungan Orang Menggunakan Metode Histogram Of Oriented Gradients-Local Binary Pattern Dengan Deteksi Kepala-Bahu Studi Kasus: Perhitungan Orang Dalam Kelas Rivan Ardyanto Sutoyo; Bedy Purnama; Febryanti Sthevanie
eProceedings of Engineering Vol 2, No 1 (2015): April, 2015
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Menghitung jumlah orang (people counting) yang berada dalam video merupakan salah satu fungsionalitas yang saat ini sedang dikembangkan para peneliti di dunia computer vision. People Counting memiliki berbagai macam manfaat seperti sistem pengawasan keamanan, estimasi jumlah kepadatan manusia, analisis bisnis di sebuah tempat, dan masih banyak lagi manfaatnya. Adapun studi kasus yang dipakai untuk pembuatan Tugas Akhir ini yaitu menghitung jumlah orang di dalam kelas dengan menggunakan kombinasi metode Histogram Of Oriented Gradients (HOG) dan Local Binary Pattern (LBP) untuk deteksi kepala dan bahu dari seorang individu. HOG-LBP digunakan untuk fitur ekstraksi untuk identifikasi objek. Kemudian perhitungan orang dilakukan dengan cakupan individu yang berada di dalam video. Keluaran dari sistem ini adalah sistem dapat menunjukkan jumlah orang dalam ruang kelas serta menunjukkan lokasi masing-masing dari individu tersebut berdasarkan kepala dan bahu. Dari hasil penelitian dengan menggunakan metode Multilevel HOG-LBP didapatkan rata-rata hasil akurasi orang duduk berjarak satu sebesar 93.53% dan rata-rata akurasi data orang duduk berdampingan sebesar 80.33%. Kata Kunci: people counting, histogram of oriented, local binary pattern, kepala,bahu
Co-Authors 1Faizal Bima Prayudha Abdul Rahim Adam Geraldy Katab Adhika Widya Prastomo Agustina, Nur Azizah Al Faraby, Said Alda Putri Utami Amalina, Neneng Nur Anang Kurniawan Anditya Arifanto Anditya Arifianto Anditya Arifiyanto Andri Arindiah Arida Kartika Atria Salim, Muhammad Rizki Bedy Purnama Brilian Aringga Prabowo Danu Hary Prakoso Diah Ajeng Dwi Yuniasih Dian Masmawati Dindin Dhino Alamsyah Dwi Prasetya Sujoko Dwiki Lazzaro Ema Rachmawati Ema Rachmawati Enki Probo Sidhi Farid Hidayat Fazmah Arif Y, Fazmah Fernanda Januar Pratama Fikri Firdaus Gamma Kosala Ghali Marzan Gia Septiana Wulandari Grandhys Setyo Utomo Gugy Lucky Khamdani Hafidh Fikri Rasyid Hizas Sabilal Rasyad Hutomo, Ardityo Cahyo Putro Hutomo I Putu Indra Aristya Imamul Akhyar Indra Bayu Kusuma Jonas de Deus Guterres Ketut Sudyatmika Putra Kurniawan Nur R Kurniawan Nur Ramadhani Kurniawan Nur Ramdhani Laksitowening, Kusuma Ayu Lukmana Sardi, Indra Mahmud Dwi Sulistiyo Maula Ilma Ahgnia Dwi Anjani Mochamad Rakha Luthfi Fahsya Muhammad Afif Amanullah Fawwaz Muhammad Jendro Yuwono Muhammad Jendro Yuwono Muhammad Salman Farhan Muhammad Zaki, Ghilman Muhammad Zulfiqar Shafar Neneng Nur Amalina Nur Hidayah, Maulana Nur Indah Puspa Idham Nur Ramadhani, Kurniawan Nurul Halimatul Azizah Prasti Eko Yunanto Rachmi Azanisa Putri Rahman, Rahadian Yusuf Abdul Retno Novi Retno Novi Reza Dwi Ansari Rimba Whidiana Ciptasari Rita Rismala Rivan Ardyanto Sutoyo Sakinah Indriyani Saputra, Naufal Luthfi Shabran Fauzan Ahmad Sulistiyo, Mahmud Tito Prihambodo Tjokorda Agung Budi W Tjokorda Agung Budi Wiharja Tjokorda Agung Budi Wirayuda Untari Novia Wisesty Wikky Fawwaz Al Maki Zeyhan Aliyah