Claim Missing Document
Check
Articles

Found 23 Documents
Search

Decision Support System For Selection of Exemplary Employees at PT. Sinar Asia Perkasa Syahriani Syahriani; Nurmah Nurmah; Luthfi Indriyani
Jurnal Riset Informatika Vol. 2 No. 4 (2020): Period September 2020
Publisher : Kresnamedia Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (847.374 KB) | DOI: 10.34288/jri.v2i4.126

Abstract

Sinar Asia Perkasa is a manufacturing company, where this company is always required to innovate and improve the quality and quality of its products. Because of this, the company PT. Sinar Asia Perkasa must improve itself to get employees who have high quality and work productivity. Employees are one of the most important parts of a company that must be managed properly. To get employees of the highest quality, a process is needed that can automatically provide recommendations in selecting exemplary employees at PT. Sinar Asia Perkasa, namely by establishing a Decision Support System. This Decision Support System is expected to assist in objectively selecting employees. Making this Decision Support System using the Profile Matching method with several criteria, namely aspects of the discipline, aspects of integrity, aspects of cooperation, and aspects of work performance. Then for the final stage of this method is ranking.
Penerapan Metode Simple Queue dalam manajemen Bandwith Jaringan Komputer Local Area Network (LAN) Pada PT. Uni Gemilang Sentosa Jakarta: Jaringan Komputer Local Area Network (LAN) Septyani, Herlina; Noviriandini, Astrid; Indriyani, Luthfi
JURNAL TEKNOLOGI DAN ILMU KOMPUTER PRIMA (JUTIKOMP) Vol. 7 No. 1 (2024): Jurnal Teknologi dan Ilmu Komputer Prima (JUTIKOMP)
Publisher : Fakultas Teknologi dan Ilmu Komputer Universitas Prima Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34012/jutikomp.v7i1.4900

Abstract

The Internet is a familiar part of business, government education, industry, and even offices, as at PT. Uni Gemilang Sentosa. Network system problems at PT. Ulni Gelmilang Selntosa is the absence of bandwidth management, which regulates the speed of the Internet for the Internet, so that the speed of the Internet is unstable between one and the other, which causes the use of the Internet not to be optimal, especially if someone is carrying out uploads and downloads. Bandwidth management controls and measures communications (network traffic and packets) on a network link to avoid congestion and poor performance. Simple queue is a method for limiting bandwidth by dividing bandwidth from small to medium and managing each user's upload and download bandwidth. One solution for bandwidth to be used more optimally is having bandwidth management using the simple queue method available on the network using MikroTik with bandwidth management at PT. Uni Gemilang internet access becomes smooth between one user and another according to their respective capacities.  
IMPLEMENTASI METODE WEBQUAL 4.0 DALAM MENGANALISIS KEPUASAN PENGGUNA SITUS JAKEVO Khairi, Fahmi; Syahriani, Syahriani; Indriyani, Luthfi
JATI (Jurnal Mahasiswa Teknik Informatika) Vol. 8 No. 3 (2024): JATI Vol. 8 No. 3
Publisher : Institut Teknologi Nasional Malang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.36040/jati.v8i3.9671

Abstract

Intansi Pemerintah Kota Jakarta menganggap kepuasan pelanggan sebagai indikator penting. Salah satunya adalah website JakEVO yang tak luput dari perhatian Pemerintah Kota Jakarta, agar mendapatkan kepuasan yang lebih tinggi dari masyarakat. Namun, hingga saat ini JakEVO belum mengevaluasi tingkat kepuasan masyarakat terhadap website yang dimilikinya. Tujuan Penelitian ini adalah untuk mengevaluasi sejauh mana kualitas situs web dapat memberikan kepuasaan terhadap pemakai layanannya. Pada penelitian ini menggunakan metode webqual 4.0 dengan memakai 4 aspek dasar yaitu kualitas penggunaan suatu situs website, kualitas interaksi, dan kualitas informasi pada sebuah website. Terdapat tiga variabel utama yang digunakan, yaitu Usability (X1), Information Quality (X2), dan Service Interaction (X3). Pengumpulan data dilakukan melalui survei online terhadap staf dan warga yang tinggal di Kecamatan Wijaya Kusuma. Para responden wajib menanggapi sekelompok pertanyaan dasar yang berjumlah 16. Kemudian, data survei akan dianalisis menggunakan metode Webqual 4.0 melalui aplikasi perhitungan SPSS. Dalam penelitian ini, dilakukan pengukuran uji validitas dan reliabilitas serta pengujian regresi linier berganda seperti uji F dan T. Hasil Secara keseluruhan dari penelitian ini, dimana penilaian R² menunjukkan bahwa sebesar 50% kepuasan pengguna dapat diatribusikan pada kualitas website JAKEVO. Keunggulan Efektivitas memberikan kontribusi yang berpengaruh terhadap kepuasan pengguna sebesar 0,074, menurut data yang diberikan pada tabel koefisien regresi. Kualitas Informasi dan Interaksi layanan juga berpengaruh terhadap kepuasan pengguna, namun tidak signifikan dengan nilai sebesar 0,119 dan -0,002 berdasarkan tabel koefisien regresi. Hal ini mungkin terjadi karena pengguna merasa bahwa interaksi layanan tidak memiliki pengaruh yang signifikan atau hanya digunakan sesekali oleh pengunjung.
Customer Loyalty Classification with Comparison of Naive Bayes, C4.5, and KNN Methods Wati, Embun Fajar; Perangin-Angin, Elvi Sunita; Indriyani, Luthfi
IJISTECH (International Journal of Information System and Technology) Vol 8, No 3 (2024): The October edition
Publisher : Sekolah Tinggi Ilmu Komputer (STIKOM) Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/ijistech.v8i3.361

Abstract

Customer loyalty is indispensable for the survival of a company. Customer loyalty needs to be maintained in order to return to visit and transact with the Company. Customer data consisting of age, annual income, purchase amount, region, purchase frequency, and loyalty score features can produce new information, namely analyzing customers who have high loyalty. Data processing is carried out using three data mining algorithms, namely Naïve Bayes, C4.5 or Decision Tree, and KNN. The stages carried out in data processing consist of data selection, preprocessing, transformation, and modelling. The customer data used amounted to 238. Modelling is carried out using Rapid Miner Software. Customer loyalty classification can be easily done with the three algorithms, namely Naive Bayes, and C4.5 or Decision Tree, and KNN which is validated by the 10-fold cross-validation method so as to produce the highest percentage of accuracy and the similarity of the accuracy value of the Naive Bayes and C4.5 algorithms, which is 96.67%. In the AUC value, it can be seen that the Naive Bayes algorithm is superior to the C4.5 algorithm or Decision Tree and KNN. The result of the highest AUC value is 0.997, the highest precision percentage is 98.92% achieved by the Naive Bayes algorithm. The result of the highest recall percentage is C4.5 of 100%. The results of the AUC value and accuracy percentage on the three algorithms prove that the performance of the three algorithms is very good.
Customer Loyalty Classification with Comparison of Naive Bayes, C4.5, and KNN Methods Wati, Embun Fajar; Perangin-Angin, Elvi Sunita; Indriyani, Luthfi
IJISTECH (International Journal of Information System and Technology) Vol 8, No 3 (2024): The October edition
Publisher : Sekolah Tinggi Ilmu Komputer (STIKOM) Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/ijistech.v8i3.361

Abstract

Customer loyalty is indispensable for the survival of a company. Customer loyalty needs to be maintained in order to return to visit and transact with the Company. Customer data consisting of age, annual income, purchase amount, region, purchase frequency, and loyalty score features can produce new information, namely analyzing customers who have high loyalty. Data processing is carried out using three data mining algorithms, namely Naïve Bayes, C4.5 or Decision Tree, and KNN. The stages carried out in data processing consist of data selection, preprocessing, transformation, and modelling. The customer data used amounted to 238. Modelling is carried out using Rapid Miner Software. Customer loyalty classification can be easily done with the three algorithms, namely Naive Bayes, and C4.5 or Decision Tree, and KNN which is validated by the 10-fold cross-validation method so as to produce the highest percentage of accuracy and the similarity of the accuracy value of the Naive Bayes and C4.5 algorithms, which is 96.67%. In the AUC value, it can be seen that the Naive Bayes algorithm is superior to the C4.5 algorithm or Decision Tree and KNN. The result of the highest AUC value is 0.997, the highest precision percentage is 98.92% achieved by the Naive Bayes algorithm. The result of the highest recall percentage is C4.5 of 100%. The results of the AUC value and accuracy percentage on the three algorithms prove that the performance of the three algorithms is very good.
LAN Bandwidth Management Using the Queue Tree Method Safinatunnaza, Salwa; Noviriandini, Astrid; Indriyani, Luthfi; Fauziah, Sifa
Golden Ratio of Data in Summary Vol. 5 No. 1 (2025): November - January
Publisher : Manunggal Halim Jaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52970/grdis.v5i1.887

Abstract

The advancement of technology, particularly in computer networks, has enabled global connectivity through the Internet. Computer networks connecting various devices allow for information sharing and communication. One common issue is slow internet speed due to suboptimal bandwidth utilization. To address this issue, bandwidth management becomes crucial, especially in managing multiple applications at PT. XYZ, bandwidth management is implemented using a Mikrotik router using the Queue Tree method. This method allows for flexible and fair bandwidth allocation, ensuring every device has a stable internet connection. This method helps enhance efficiency and ensures bandwidth allocation is aligned with user needs, resulting in smooth and evenly distributed connectivity across the network.
Hubungan antara Efikasi Diri dan Dukungan Sosial terhadap Manajemen Diri Pasien Tuberkulosis Paru di Rumah Sakit Islam Sultan Agung Semarang Indriyani, Luthfi; Amal, Ahmad Ikhlasul; Melastuti, Erna
Jurnal Pendidikan Tambusai Vol. 9 No. 1 (2025)
Publisher : LPPM Universitas Pahlawan Tuanku Tambusai, Riau, Indonesia

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31004/jptam.v9i1.25905

Abstract

Tuberkulosis disebabkan oleh bakteri yang bernama Mycobacterium tuberculosis. Seorang yang menjalani pengobatan membutuhkan waktu yang lama dalam prosesnya. Upaya dalam mengoptimalkan pengobatannya maka pasien membutuhkan manajemen diri yang baik. Untuk mendukung manajemen diri yang baik pasien juga membutuhkan efikasi diri dan dukungan sosial untuk mengoptimalkan keberhasilan dalam proses pengobatannya. Tujuan penelitian ini untuk menilai apakah terdapat hubungan antara efikasi diri dengan dukungan sosial terhadap manajemen diri pasien tuberkulosis paru di Rumah Sakit Islam Sultan Agung Semarang. Penelitian ini merupakan jenis penelitian kuantitatif menggunakan pendekatan cross sectional. Teknik pengambilan sampelnya menggunakan non probability sampling jenis total sampling, sedangkan untuk pengumpulan datanya menggunakan kuesioner. Jumlah responden sebanyak 56 orang. Data yang diperoleh diolah secara statistik dengan menggunakan uji spearman. Berdasarkan hasil analisis diperoleh pasien tuberkulosis paru yang menjalani pengobatan pada penelitian ini mayoritas memiliki efikasi diri yang baik sebanyak 71,4%, dukungan sosial dengan kategori tinggi sebanyak 55,4%, dan manajemen diri dengan kategori cukup sebanyak 62,5%. Analisis hubungan antara efikasi diri terhadap manajemen diri mendapatkan (p value = 0,001) dan hasil hubungan antara dukungan sosial terhadap manajemen diri mendaptkan (p value = 0,000). Terdapat hubungan antara efikasi diri dengan dukungan sosial terhadap manajemen diri pasien tuberculosis paru di Rumah Sakit Islam Sultan Agung Semarang dengan (p value > 0,05).
Comparison of Naive Bayes and C4.5 Methods with Particle Swarm Optimization on Customer Loyalty Classification Wati, Embun Fajar; Perangin-Angin, Elvi Sunita; Indriyani, Luthfi
IJISTECH (International Journal of Information System and Technology) Vol 8, No 6 (2025): The April edition
Publisher : Sekolah Tinggi Ilmu Komputer (STIKOM) Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/ijistech.v8i6.382

Abstract

The Company attaches great importance to customer loyalty for the sustainability of the Company. Loyal customers will buy many times and provide great profits. In this study, the decision tree method or C4.5 and naïve bayes were used with PSO optimization for customer classification which aims to design a strategy in decision-making towards disloyal customers. Some of the stages carried out are data load into MS. Excel, data cleaning from noise, data selection as many as 238 obtained from previous research with several attributes, including, namely age, annual income, purchase amount, region, purchase frequency, and loyalty score, as well as data transformation, namely each attribute is grouped into 2 with their own criteria, data testing by modeling data through Rapidminer, Data evaluation by examining the values of accuracy, precision, recall, and AUC. Both methods have the same accuracy value of 96.67% and the same recall value of 100%. For the precision value, there is a difference of 0.6% and the precision decision tree value is higher than the naïve Bayes which is 96.16%. As for the AUC value, it is higher naïve bayes, which is 0.922 with the difference from the decision tree of 0.059. It can be concluded that the two methods in processing customer loyalty data in this study have the same accuracy, so both methods are equally good.
Comparison of Naive Bayes and C4.5 Methods with Particle Swarm Optimization on Customer Loyalty Classification Wati, Embun Fajar; Perangin-Angin, Elvi Sunita; Indriyani, Luthfi
IJISTECH (International Journal of Information System and Technology) Vol 8, No 6 (2025): The April edition
Publisher : Sekolah Tinggi Ilmu Komputer (STIKOM) Tunas Bangsa

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30645/ijistech.v8i6.382

Abstract

The Company attaches great importance to customer loyalty for the sustainability of the Company. Loyal customers will buy many times and provide great profits. In this study, the decision tree method or C4.5 and naïve bayes were used with PSO optimization for customer classification which aims to design a strategy in decision-making towards disloyal customers. Some of the stages carried out are data load into MS. Excel, data cleaning from noise, data selection as many as 238 obtained from previous research with several attributes, including, namely age, annual income, purchase amount, region, purchase frequency, and loyalty score, as well as data transformation, namely each attribute is grouped into 2 with their own criteria, data testing by modeling data through Rapidminer, Data evaluation by examining the values of accuracy, precision, recall, and AUC. Both methods have the same accuracy value of 96.67% and the same recall value of 100%. For the precision value, there is a difference of 0.6% and the precision decision tree value is higher than the naïve Bayes which is 96.16%. As for the AUC value, it is higher naïve bayes, which is 0.922 with the difference from the decision tree of 0.059. It can be concluded that the two methods in processing customer loyalty data in this study have the same accuracy, so both methods are equally good.
PERANCANGAN WEBSITE UNTUK PENYEWAAN KAPAL TRAVELING BERBASIS ONLINE Muhaimin Azis; Syahriani; Luthfi Indriyani
Akrab Juara : Jurnal Ilmu-ilmu Sosial Vol. 9 No. 1 (2024): Februari
Publisher : Yayasan Azam Kemajuan Rantau Anak Bengkalis

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Sistem informasi penyewaan kapal pada KM. Bunga Suci masih bersifat manual. Media mempromosikan kapal juga masih kurang efektif, penyewaan kapal harus mendatangi langsung ke tempat pemilik sewa, dan tidak ada sistem pembayaran transfer ke rekening. Hal ini sangatlah merugikan banyak waktu bagi pemesan maupun pengelola yang mengelola penyewaan tersebut. Apalagi kapal yang sudah disewa tidak sesuai dengan harapan dikarenakan informasi dari harga kapal, gambar kapal, juga pengemudi kapal yang akan disewa kurang akurat. Oleh karena itu, untuk memaksilkan media mempromosikan penyewaan kapal dan merubah sistem pembayaran menjadi lebih efisien dengan menggunakan layanan pembayaran virtual. Diharapkan untuk membuat aplikasi rancang bangun website penyewaan online kapal travelling. Pada perancangan pembuatan wabsite ini penulis menggunakan metode waterfall, karena perancangan website ini terbilang sederhana. Sehingga pemesan atau calon pemesan dengan mudah mengakses website penyewaan kapal dan tidak perlu lagi pergi ke tempat penyewaan kapal untuk mencari informasi dan melakukan pembayaran ditempat penyewaan tersebut. Dengan dibentuknya aplikasi website tersebut, pemesan dapat melihat lebih detail tentang informasi kapal yang akan disewa dan tidak perlu membuang waktu dalam melakukan pembayaran sewa kapal.