Claim Missing Document
Check
Articles

Found 27 Documents
Search

OPTIMALISASI LAMA PEMANFAATAN AREA TEPI DANAU BUATAN SEBAGAI FASILITAS REKREASI DI LINGKUNGAN PERUMAHAN Alifiani, Amalia; Supriyadi, Bambang; Prianto, Eddy; Irawanto, Bambang
MATEMATIKA Vol 17, No 2 (2014): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (556.626 KB)

Abstract

Much residential  built by developers who are equipped with an artificial lake as its attractiveness. Recreation area in a residential environment promotes the maintenance of security and generally are closed. Likely users recreation area is a internal  residential community and has more  the long term to do recreation activities. To take advantage of the length time of community recreation activities it could take effective visit, but in fact the use of recreation area on the time of artificial lake tends to be limited due to security In this paper to determine the optimal value of long utilization of the limited time constrains of use for users from within and outside the housing. Linear Programming method to use for analysis the three approach maximal visit time from deferent time, visit time 12 our, 15 our and 24 our,  obtained the higher of visitation time the longer  utilization.The users most optimal to use recreation area the community from internal residential because it is influenced by environment.
SYARAT PERLU LAPANGAN PEMISAH Irawanto, bambang
MATEMATIKA Vol 4, No 2 (2001): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (30.861 KB)

Abstract

Field is integral domain and is a such that every non-zero elemen in it has multiplicative inverse. Extension field F of field K is splitting field of collections polinomial { fi(x) | i Î I } of K if F is the smallest  subfield  containing K and all the zeros in  of the polinomial fi(x). Elemen a Î F is algebra over K if f (a) = 0 for some 0 ¹ f (x) Î K[x]. Splitting field is extension algebra.
SIFAT-SIFAT LANJUT NEUTROSOFIK MODUL ., Suryoto; Irawanto, Bambang; Puspita, Nikken Prima
MATEMATIKA Vol 19, No 2 (2016): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (194.874 KB)

Abstract

Neutrosophic module over the ring with unity is an algebraic structure formed by a neutrosophic abelian group by providing actions scalar multiplication on the structure. The elementary properties of neutrosophic module have been looked at, that are intersection dan summand among neutrosophic submodules are neutrosophic submodule again, but it not true for union of neutrosophic submodules. In this article discussed the advanced properties of the neutrosophic module and the algebraic aspects respect to this structure, including neutrosophic quotient module and neutrosophic homomorphism module and can be shown that most of the properties of the classical module still true to the neutrosophic structure, especially with regard to the properties of neutrosophic homomorphism module and the fundamental theorem of neutrosophic homomorphism module.
METODE URUTAN PARSIAL UNTUK MENYELESAIKAN MASALAH PROGRAM LINIER FUZZY TIDAK PENUH Jiwangga, Sesar Sukma; Irawanto, Bambang; Djuwandi, Djuwandi
MATEMATIKA Vol 20, No 1 (2017): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1504.216 KB)

Abstract

Not fully fuzzylinear programming problem have two shapes of objecyive function. that is triangular fuzzy number and trapezoidal fuzzy number. The decision variables and constants right segment only has a triangular fuzzy number. Partial order method can be used to solve not fully fuzzy linear programming problem with decision variables and constants right segment are triangular fuzzy number. The crisp optimal objective function value generated from the partial order method.
METODE KUMAR UNTUK MENYELESAIKAN PROGRAM LINIER FUZZY PENUH PADA MASALAH TRANSPORTASI FUZZY S., Mohammad Ervan; Irawanto, Bambang
MATEMATIKA Vol 19, No 2 (2016): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (209.536 KB)

Abstract

In this paper, we discusses fully fuzzy linear programming in transportation problem. To find the fuzzy optimal solution of the problem with equality constraints, we use Kumar’s Method. The value of the fuzzy optimal solution obtained is used to find the optimal value of fuzzy objective function. Then do defuzzification to obtain crisp optimal solutions by using Ranking Function. To illustrate the Kumar’s Method, we give a example as iteration
KETERHUBUNGAN GALOIS FIELD DAN LAPANGAN PEMISAH Irawanto, Bambang
MATEMATIKA Vol 4, No 1 (2001): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (31.993 KB)

Abstract

In this paper, it was learned of the necessary and sufficient condition for finite field with pn elements, p prime and n ³ 1 an integer. A field F is an extention field of a field K if K subfield F. The extension field F of field K is Splitting field of collection polinomial { fi (x) | i Î I } of K if F smallest subfield containing K and all the zeros in of the polinomial fi(x). The zeros of polinomial fi(x) are elements of field F and the elements of F is finite then F is finite field (Galois fileld). F is finite with pn elements, p prime and n ³ 1 an integer if only if F is Splitting field of  - x over Zp.
AKAR-AKAR POLINOMIAL SEPARABEL SEBAGAI PEMBENTUK PERLUASAN NORMAL Daruni, Sulastri; Surarso, Bayu; Irawanto, Bambang
MATEMATIKA Vol 7, No 3 (2004): JURNAL MATEMATIKA
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (36.611 KB)

Abstract

Misalnya F adalah lapangan perluasan dari lapangan K dan f(x) adalah  polinomial tidak tereduksi dalam K maka f(x) dapat difaktorkan sebagai hasil kali dari faktor linear dalam lapangan pemisahnya . Jika akar-akar dari polinomial tersebut tidak ada yang ganda maka polinomial tersebut merupakan polinomial separabel. Selanjutnya untuk Lapangan pemisah yang memuat kesemua akar-akar yang berlainan dari polinomial tak tereduksi f(x) maka lapangan pemisah tersebut merupakan  perluasan normal.
MENENTUKAN POLINOMIAL MINIMAL ATAS GF p A, Nunung; Irawanto, Bambang
MATEMATIKA Vol 11, No 2 (2008): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (134.67 KB)

Abstract

Let  is finite field with  elements, denoted by . If  be an extension field of   and  is the algebra element of , then , polynomial of  of smallest degree such that  called minimal polynomial of . If  is primitive element, then  whose called primitive polynomial, is the minimal polynomial of  whose generate the elements of .The minimal polynomial of  whose generate the elements of  is the factor of , because the elements of  are the solution of . So, if   and  are known we have . If we factoring it, will be obtained , the minimal polynomial of  whose generate the elements of , where  is some irreducible factor in  of degree  that contain a primitive element.  
NEUTROSOFIK MODUL DAN SIFAT-SIFATNYA ., Suryoto; Irawanto, Bambang; Puspita, Nikken Prima
MATEMATIKA Vol 18, No 1 (2015): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (46.437 KB)

Abstract

Given any ring with unity and a commutative neutrosophic group under the additional operation, then from the both structures can be constructed a neutroshopic module by define the scalar multiplication between elements of the ring and elements of the commutative group. Further by generalized the neutrosophic module can be obtained a substructure of the neutrosophic module called a neutrosophic submodule. In this paper, from the concept of neutrosophic module and the ring with unity we study a generalization of classical module, that is a neutrosophic module and its properties. By utilizing the neutroshopic element as an indeterminate and an idempotent element under multiplication can be shown that most of the basic properties of clasiccal module generally still true on this neutrosophic struture.
BILANGAN RADIO PADA GRAF GEAR Puspasari, Ambar; Irawanto, Bambang
MATEMATIKA Vol 16, No 1 (2013): Jurnal Matematika
Publisher : MATEMATIKA

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (183.203 KB)

Abstract

Let d(u,v) denote the distance between two distinct vertices of connected graph G, and diam (G) be the diameter of G. A radio labeling c of G is an assignment of positive integer to the vertices of G satisfying  d(u, v) + |c(u) − c(v)| ≥ diam(G) + 1.The maximum integer in the range of the labeling is its span. The radio number of G, rn(G), is the minimum possible span. Radio number of gear graph G’n , for n ≥ 4  is rn(G’n) ≥ 4n + 2, and n ≥ 7 is rn(G’n) ≤ 4n + 2. The labeling of gear graph G’n , n=4,5,6 is rn(G’4) = 18, rn(G’5) = 22, rn(G’6) = 26 than for n ≥ 4 , the radio number rn(G’n) is  4n + 2.