Claim Missing Document
Check
Articles

Found 13 Documents
Search

REGIONS GROUPING IN CENTRAL SULAWESI PROVINCE BY TRANSMITTED DISEASE USING FUZZY GUSTAFSON KESSEL Fajri, Mohammad; Rais, Rais; Handayani, Lilies
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 17 No 1 (2023): BAREKENG: Journal of Mathematics and Its Applications
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (367.308 KB) | DOI: 10.30598/barekengvol17iss1pp0275-0284

Abstract

Health is one of the main indicators in determining the human development index. This is in contradiction with the situation in several areas in Indonesia where infectious diseases are the cause of death and have become extraordinary events. It was recorded in Central Sulawesi that in 2020 there were 8 extraordinary events due to infectious diseases which made this province become relatively high infectious diseases. One of the efforts that can be made to identify infectious diseases in an area is to form a grouping of locations into a group that has similarities and same characteristics. This is intended to provide information related to health in each region. Cluster analysis is one of method that can be used to grouping the data. Cluster analysis is the process of dividing data into a group based on the degree of similarity. Data with similar characteristics will be gathered in one group. One of the algorithms in cluster analysis is Fuzzy Gustafson Kessel which can produce relatively better groupings compared to the basic algorithms in cluster analysis. This study will use data on infectious diseases in Central Sulawesi Province with several recorded infectious diseases. From 13 regions, 5 clusters were formed. Clusters 1, 2 and 3 each consist of 3 regions, while clusters 4 and 5 each consist of 2 regions.
Mapping of Village Population Profile with Schistosomiasis Cases Using Clustering Large Applications Fajri, Mohammad; Rais, Rais; Gamayanti, Nurul Fiskia; Dg Mabaji, Siti Natazha; Rahman Jati, Shalsa Yunita; Arisandi, Rizwan
Jurnal Varian Vol. 7 No. 2 (2024)
Publisher : Universitas Bumigora

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30812/varian.v7i2.3423

Abstract

Schistosomiasis is a tropical disease caused by Schistosoma mansoni (intestinal schistosomiasis) and Schistosoma haematobium (urogenital schistosomiasis). Schistosomiasis in Indonesia is endemic to Central Sulawesi and is commonly found in the Napu Valley and Bada Valley areas, which are administratively included in Poso District and Sigi District. One approach to obtain information on schistosomiasis endemic areas is by mapping the population profile of villages with schistosomiasis cases. This mapping is intended to provide an overview of the social and demographic conditions of villages with schistosomiasis cases. One of the many analysis methods that can be used is cluster analysis. Cluster analysis is a method for grouping data based on the extent of their similarities. Data with similar characteristics will be grouped together, while data with different characteristics will be placed in different groups. Among several types of methods in cluster analysis is Clustering Large Application (CLARA). CLARA is a clustering method which is more robust to unusual data and can be applied to handle large volumes of data. The results of this study are obtained two optimum clusters, each possessing distinct characteristics as determined by Schistosomiasis cases indicators. Cluster 1 with low schistosomiasis cases and cluster 2 with high schistosomiasis cases.
MODELING THE DURATION OF MATERNAL LABOR AT ANUTAPURA HAMMER HOSPITAL USING LIN-YING ADDITIVE HAZARD REGRESSION Fadjryani, Fadjryani; Setiawan, Iman; Sain, Hartayuni; Fajri, Mohammad; Gamayanti, Nurul Fiskia; Radi, Aryani; Aisya, Cici
BAREKENG: Jurnal Ilmu Matematika dan Terapan Vol 20 No 1 (2026): BAREKENG: Journal of Mathematics and Its Application
Publisher : PATTIMURA UNIVERSITY

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30598/barekengvol20iss1pp0523-0540

Abstract

The Central Sulawesi government has a Sustainable Development Goals (SDGs) target for 2020-2024, which sets the maternal mortality rate below 70/100,000 KH. However, in 2018-2022, the maternal mortality rate fluctuated by 128/100,000 KH. One of the factors causing maternal mortality is the duration of the labor process. The factors that are thought to have an influence on the duration of labor are gestational age, maternal age, baby height, parity, and hemoglobin levels. Therefore, this study aims to see what modeling and factors affect the duration of birth using Lin-Ying additive hazard regression analysis. Data were obtained from the medical records of normal deliveries between January and December 2023 at Anutapura Palu Hospital. The results showed that the factors that affect the duration of birth are preterm gestational age, aterm gestational age, maternal age 20-35 years, primigravida mothers, multigravida mothers, and mothers who are not anemic. A limitation of this study is the relatively short data collection period of one year, which may not capture variations or trends in labor outcomes over time.