Claim Missing Document
Check
Articles

Found 15 Documents
Search

Review of The Effectiveness of Plant Media Extracts in Barium Hexaferrite Magnets (BaFe12O19) Jaya Edianta; Nanang Fauzi; Marzuki Naibaho; Fitri Suryani Arsyad; Idha Royani
Science and Technology Indonesia Vol. 6 No. 2 (2021): April 2021
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2021.6.2.39-52

Abstract

Betel leaf is a typical Indonesian herbal plant that propagates on other tree trunks. So far, betel leaf has only been used in biomedicine and traditional medicine, whereas the chemical compounds of betel leaf can be used to absorb electromagnetic waves. In this mini-review, we review several research results to discuss the potential effectiveness of betel leaf in barium hexaferrite as an absorber of electromagnetic radiation. We compiled this mini-review based on the literature review method that is discussed extensively and in-depth regarding the chemical composition of betel leaf, modification of the development of barium hexaferrite material with betel leaf media extract, characteristics of BaFe12O19 as absorption of electromagnetic waves, and the effectiveness of media extracts in BaFe12O19 as absorption of electromagnetic waves. Based on the results of the literature review, the modification of BaFe12O19 material synthesis can include microemulsion, solid-state, coprecipitation, sol-gel, and hydrothermal synthesis. So far, hydrothermal synthesis is a synthesis method of mixing betel leaf extract media and ferrite-based magnets that have been studied before. Betel leaf in ferrite-based magnetic materials has been studied not to damage the surface morphology and characteristics of the magnetic material. The results of the assessment also show the effectiveness of adding other elements or compounds such as Ni, Al2O3, and composites in ferrite-based magnetic materials that can absorb more than 90% of electromagnetic waves in the frequency range 2-18 GHz.
The Characteristic Analysis of Caffeine Molecularly Imprinted Polymers Synthesized Using The Cooling-Heating Method, for Application as a Sensor Material Idha Royani; Amalia Amalia; Jorena Jorena; Fitri Suryani Arsyad; Erry Koriyanti; Fiber Monado
Science and Technology Indonesia Vol. 6 No. 4 (2021): October
Publisher : Research Center of Inorganic Materials and Coordination Complexes, FMIPA Universitas Sriwijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26554/sti.2021.6.4.256-260

Abstract

The cooling-heating method was used to successfully synthesize molecularly imprinted polymers on caffeine. Caffeine was used as a template and mixed with chloroform solvent, methacrylic acid as a monomer, ethylene glycol dimethacrylate as a cross-linker, and benzoyl peroxide as an initiator. The solution was stirred for 15 minutes and placed in a vial. Then it was placed in a cooler with a temperature of -5○C for 60 minutes and then inserted into an oven with an increasing temperature at 75○C, 80○C, and 85○C for 3, 2 and 1 hour, respectively. Furthermore, the repeated washing process resulted in solid polymer, which was subjected to template leaching to produce polymers with specific cavities called molecularly imprinted polymers (MIP). The resulting caffeine polymer and MIP were tested using SEM, FTIR, and XRD methods. In addition, the SEM image analysis data showed 388 cavities in the polymer after template leaching, compared to the 121 cavities in the unwashed polymer. This result was supported by the FTIR spectrum analysis which showed that caffeine MIP has a higher transmittance value than the polymer. Therefore, the caffeine concentration was significantly reduced after the leaching process. The XRD spectra showed that caffeine MIP had a smaller halfmaximum diffraction peak width (FWHM) compared to the polymer. Also, the low FWHM value depicted a larger crystalline size in the caffeine MIP compared to the polymer.
Comparison of Bentonite Characteristics Before and After be Used as Coagulan of Liquid Tofu Waste Ayu Yuliana; Risfidian Mohadi; Fitri Suryani Arsyad; Safaruddin Safaruddin
International Journal of Social Service and Research (IJSSR) Vol. 3 No. 2 (2023): International Journal of Social Service and Research (IJSSR)
Publisher : CV. Ridwan Publisher

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.46799/ijssr.v3i2.251

Abstract

Bentonite obtained from East Java is a Ca-Bentonite type which has been activated with H2SO4 20% based on the XRF results which showed CaO level of 4.15%. Bentonite can be reused after being applied as a coagulant and its based on the results of the Bentonite XRD diffractogram pattern before and after being applied as a coagulant that doesn’t have a significant change of 2q, including the 2q montmorillonite at 21,98? (516,42 cps), 35,47? (384,43 cps), 62,26? (100,66 cps) to 22? (436,22 cps), 35,47? (326,46 cps), 62,79? (65,79 cps) and 2q of quartz (SiO2) at 26,5? (607,56 cps) to 26,53? (537,65 cps). The optimum coagulation conditionsis when height of bentonite is 900 mg in 50 mL of liquid tofu waste pH 2, its can remove turbidity by 98% and TSS by 84.6%.
Highly Efficient Catalytic Oxidative Desulfurization of Dibenzothiophene using Layered Double Hydroxide Modified Polyoxometalate Catalyst Nur Ahmad; Muhammad Badaruddin; Nova Yuliasari; Fitri Suryani Arsyad; Aldes Lesbani
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 4 Year 2022 (December 2022)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.4.16373.821-830

Abstract

Layered double hydroxide-modified polyoxometalate (ZnAl-PW) was prepared and used for the oxidative desulfurization of dibenzothiophene. XRD patterns of ZnAl-LDH and PW are still present in ZnAl-PW. The bands of ZnAl-PW in wavenumber 3276, 1637, 1363, 1050, 952, 887, and 667 cm-1. The typical surface of ZnAl-LDH and ZnAl-PW can be observed not smooth in different sized with irregular shapes. The average diameter distribution of ZnAl-LDH and ZnAl-PW is 14 nm and 47 nm, respectively. For dibenzothiophene with 500 ppm, conversion on ZnAl-LDH, PW, and ZnAl-PW was 94.71%, 95.88%, and 99.16%, respectively. Conversion of dibenzothiophene in line with the acidity of ZnAl-LDH, PW, and ZnAl-PW were 0.399, 1.635, and 3.023 mmol/gram, respectively. The most effective catalyst dosage for the desulfurization of dibenzothiophene on ZnAl-LDH, PW, and ZnAl-PW is 0.25 g. The unchanged dibenzothiophene concentration indicates a heterogeneous system. ZnAl-LDH, PW, and ZnAl-PW are truly heterogeneous catalysts. After 3 cycles of oxidative desulfurization, the percentage conversion of dibenzothiophene on ZnAl-LDH, PW, and ZnAl-PW were 77.42 %, 65.98%, and 86.38%, respectively. Copyright © 2022 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
The Utilization of Mg-Al/Cu as Selective Adsorbent for Cationic Synthetic Dyes Arini Fousty Badri; Neza Rahayu Palapa; Risfidian Mohadi; Mardiyanto Mardiyanto; Fitri Suryani Arsyad; Aldes Lesbani
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 4 Year 2021 (December 2021)
Publisher : Masyarakat Katalis Indonesia - Indonesian Catalyst Society (MKICS)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.4.11043.696-706

Abstract

Mg-Al-LDH is a chemical compound produced through co-precipitation technique and modified with Cu(NO3)2.6H2O to form Mg-Al/Cu. However, the research on the capability of these compounds for adsorbing mixtures of cationic dyes as well as malachite green (MG), methylene blue (MB), and Rodhamine-B (Rh-B) has not been carried out. Therefore, this research aims to determine the performance of Mg-Al-LDH and Mg-Al/Cu for removing cationic dyes. The materials used were characterized by using XRD powder, FT-IR, and N2 adsorption desorption. The Adsorption process was conducted by batch system and several effects were investigated, such as kinetic parameter, isotherm, and the temperature condition. The stability feature of Mg-Al-LDH and Mg-Al/Cu was obtained from the regeneration process in the five cycles. The results presented that Mg-Al/Cu was effectively produced, which was indicated by the formation of layer at 10.792° (003), 22.94° (006), 35.53° (112), 55.78° (110), and  56.59° (116). Mg-Al-LDH and Mg-Al/Cu were found to adsorbed MG than the other cationic dyes with adsorption capacity of 68.996 mg/g and 104.167 mg/g, respectively. The unique properties of Mg-Al/Cu includes, structural stability towards the reuse of adsorbent subsequently for five times, without significant decrease of adsorption capacity. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).