Claim Missing Document
Check
Articles

Found 23 Documents
Search

Analisis Model Matematika PLSQ Jumlah Perokok St. Halija; Fardinah Fardinah; Ahmad Ansar
Journal of Mathematics: Theory and Applications Volume 3, Nomor 2, 2021
Publisher : Program Studi Matematika Universitas Sulawesi Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1269.262 KB) | DOI: 10.31605/jomta.v3i2.1370

Abstract

Smoking is a habit that is favored by some people, but smoking causes health, economic, social and environmental burdens not only for smokers but also for others. This study aims to determine the mathematical model of the number of smokers, analysis of the equilibrium point of the PLSQ mathematical model of the number of smokers and a simulation of the mathematical model of the PLSQ of the number of smokers. In this study, the researcher assumed that the current smoker had a death rate caused by smoking and that the former smoker after he recovered, would not return to smoking. The results obtained are the PLSQ mathematical model of the number of smokers which produces 1 (one) smoke-free equilibrium point and 1 (one) smoker endemic point from the model. The stability analysis of the model was carried out using the Routh-Hurwitz Criteria to identify the characteristics of the eigenvalues. From the results of the stability analysis, it was found that the smoker-free equilibrium point E0 and the smokers endemic equilibrium point E1 were stable if the condition for the relationship between parameters were met. At the end of the study, a simulation model was given using the Maple application
Pengintegralan Numerik untuk Interval Titik yang Tidak Sama menggunakan Aturan Boole Nopriani Nopriani; Ahmad Ansar; Darma Ekawati
Journal of Mathematics: Theory and Applications Volume 3, Nomor 1, 2021
Publisher : Program Studi Matematika Universitas Sulawesi Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (262.962 KB) | DOI: 10.31605/jomta.v3i1.1374

Abstract

Secara umum pengintegralan numerik didasarkan pada interval titik yang sama namum pada kenyataannya dihadapkan pada persoalan pengintegralan numerik dengan interval titik yang tidak sama. Penelitian ini dilakukan untuk memperoleh rumus umum pengintegralan numerik untuk interval titik yang tidak sama dengan menggunakan selisih terbagi Newton sehingga diperoleh rumus umum dan error dari integrasi numerik dengan menggunakan aturan Boole. Selanjutnya disimulasikan contoh integrasi numerik dengan bantuan Program MATLAB untuk membandingkan hasil numerik dan analitik sehingga diperoleh hasil yang mendekati nilai eksak. Berdasarkan hasil simulasi numerik diketahui bahwa semakin banyak subinterval yang digunakan maka semakin menghampiri solusi eksak atau solusi sejati.
Syarat Perlu dan Syarat Cukup Seminear-ring Komutatif Terhadap Operasi Perkalian Meryta Febrilian Fatimah -; Ahmad Ansar; Raswan
Journal of Mathematics: Theory and Applications Volume 3, Nomor 2, 2021
Publisher : Program Studi Matematika Universitas Sulawesi Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (284.747 KB) | DOI: 10.31605/jomta.v3i2.1390

Abstract

Seminear-ring adalah hasil generalisasi dari semiring dan near-ring. Secara umum, seminear-ring belum tentu komutatif. Sehingga perlu diidentifikasi syarat perlu dan syarat cukup seminear-ring komutatif. Paper ini membahas seminear-ring komutatif khusus terhadap operasi perkalian, sebab terhadap operasi penjumlahannya belum tentu komutatif. Seminear-ring yang digunakan dalam paper ini adalah seminear-ring kanselasi dengan elemen satuan. Mathematics Subject Classification:16Y60,16Y99.
Pelatihan Geogebra Pada Materi Bangun Datar bagi Guru Matematika Sekolah Menengah Pertama di Kec. Wonomulyo Ahmad Ansar; Asrirawan
Abdimas Toddopuli: Jurnal Pengabdian Pada Masyarakat Vol. 2 No. 1 (2020): Desember 2020
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30605/atjpm.v2i1.386

Abstract

Media pembelajaran matematika dirancang untuk meningkatkan efektivitas dan efisiensi proses belajar mengajar. Pembuatan media pembelajaran matematika berbantuan aplikasi sangat cocok menggunakan geogebra. Oleh karena itu, dirancang suatu kegiatan yang mampu memberikan pemahaman dalam menggunakan aplikasi geogebra dalam membuat media pembelajaran. Tujuan kegiatan pengabdian kepada masyarakat ini adalah memperkenalkan aplikasi Geogebra untuk membantu pembelajaran matematika serta untuk meningkatkan keterampilan guru dalam membuat dan mengembangkan media pembelajaran matematika dengan visualisasi yang menarik. Kegiatan pengabdian ini dilakukan di SMP Negeri 5 Wonomulyo dan diikuti oleh 9 guru dari berbagai sekolah di Kec. Wonomulyo. Pelaksanaan pengabdian kepada masyarakat dilakaukan dalam empat tahap kegiatan yaitu tahap awal, tahap persiapan, tahap pelaksanaan dan tahap evaluasi. Hasil yang diperoleh berupa peningkatan kemampuan guru matematika dalam menggunakan geogebra dan membuat media pembelajaran materi bangun datar.
KARAKTERISTIK IDEAL PADA SEMINEAR-RING DAN SEMINEAR-RING SEDERHANA Meryta Febrilian Fatimah; Ahmad Ansar
Proximal: Jurnal Penelitian Matematika dan Pendidikan Matematika Vol. 5 No. 1 (2022): Volume 5 Nomor 1 Tahun 2022
Publisher : Universitas Cokroaminoto Palopo

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (436.9 KB) | DOI: 10.30605/proximal.v5i1.1488

Abstract

Diberikan seminear-ring $S$. Seminear-ring merupakan hasil generalisasi dari semiring dan near-ring. Ideal pada seminear-ring $S$ didefinisikan dengan cara yang sama seperti ideal pada semiring. Pada seminear-ring $S$ terdapat beberapa jenis ideal yaitu ideal prima, ideal semiprima, ideal prima lengkap dan ideal semiprima lengkap. Ideal kiri (kanan) $Sa(aS)=S$ berakibat seminear-ring sederhana kiri (kanan). Jika $(Sa)S=S$ maka $S$ merupakan seminear-ring sederhana. Konsep ideal pada seminear-ring akan diperkenalkan lebih khusus pada penelitian ini.
Some Fixed Point Results on Multiplicative Metric Spaces Ahmad Ansar; Muh. Akbar Idris
Journal of Mathematics: Theory and Applications Volume 4, Nomor 1, 2022
Publisher : Program Studi Matematika Universitas Sulawesi Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (305.488 KB) | DOI: 10.31605/jomta.v4i1.1845

Abstract

In this paper, we first discussed some results about multiplicative metric spaces to support the main results. The aim of this paper is to present fixed point some result that satisfied some generalized of contraction mapping related to multiplicative metric spaces. Furthermore, some examples are given to support results
Analisis Model Dua Mangsa Satu Pemangsa dengan Pertahanan Kelompok dan Pemanenan Linear pada Mangsa Fardinah Fardinah; Darma Ekawati; Hikmah Hikmah; Ahmad Ansar
SAINTIFIK Vol 8 No 2 (2022): Saintifik: Jurnal matematika, sains, dan pembelajarannya.
Publisher : Universitas Sulawesi Barat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31605/saintifik.v8i2.381

Abstract

Dalam lingkungan mangsa pemangsa, terutama yang terdiri atas lebih dari satu spesies mangsa, terdapat beberapa perilaku pemangsa dalam berburu mangsa. Pada umumnya pemangsa lebih suka berburu di suatu habitat untuk beberapa waktu dan kemudian merubah kemauannya ke habitat lain. Situasi ini sangat berbeda ketika spesies mangsa terdiri dari individu-individu dalam jumlah yang lebih besar dan dengan ukuran tubuh yang lebih besar dari pemangsa serta memiliki kemampuan komunikasi untuk membentuk pertahanan kelompok sehingga mangsa tersebut dapat bertahan dan melawan pemangsa. Selain itu dapat juga dijumpai dalam suatu lingkungan bahwa terdapat spesies yang dapat dipanen untuk memenuhi kebutuhan manusia. Penelitian ini bertujuan untuk menganalisis kestabilan model dua mangsa satu pemangsa dengan pertahanan kelompok dan pemanenan linear pada mangsa yang terdiri dari tiga subpopulasi yaitu dua jenis spesies mangsa dan satu pemangsa. Jenis kestabilan ditentukan berdasarkan karakteristik nilai eigen yang diperoleh dengan menggunakan kriteria Routh-Hurwitz. Dari penelitian ini diperoleh bahwa kepunahan subpopulasi pemangsa dan eksistensi semua subpopulasi dapat terjadi jika memenuhi kondisi yang disyaratkan
Prediksi Jumlah Pasien Positif Covid-19 Di Indonesia Menggunakan Model Berbasis Spasio Temporal GSTAR Orde Satu Maisuri Maisuri; Asrirawan Asrirawan; Ahmad Ansar
Seminar Nasional Official Statistics Vol 2021 No 1 (2021): Seminar Nasional Official Statistics 2021
Publisher : Politeknik Statistika STIS

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (421.471 KB) | DOI: 10.34123/semnasoffstat.v2021i1.1088

Abstract

Coronavirus Disease 2019 (COVID-19) is a pandemic disease that has not been previously identified in humans. The virus that causes COVID-19 is called Sars-CoV-2. And this corona virus is zoonotic (transmitted between animals and humans). The spread of COVID-19 can be through droplets (small particles) when someone talks or sneezes, air, and contaminated surfaces. So that the main factors causing the increase in COVID-19 include increased movement, activity, and interaction of the population, such as activities in public transportation and the workplace, then the new variant factor of COVID-19 and the linkage in the previous time. The process of spreading from one location to another (transmission) involves a spatial process. The COVID-19 time series data can be modeled with the spatio-temporal-based GSTAR model on 3 islands in Indonesia, namely Java Island and Sulawesi Island. The weight used in this study is the inverse distance weight with the appropriate GSTAR model being GSTAR (1,1). The forecast level of the GSTAR model for all testing and training data with Inverse Distance weights which has the smallest RMSE is in the GSTAR model for Location Java, which is 0.40255. Meanwhile, the forecast for the GSTAR model which has the largest RMSE value is Sulawesi Island, which is 1.616303.
Fixed point results in α, β partial b-metric spaces using C-contraction type mapping and its generalization Ahmad Ansar; Syamsuddin Mas'ud
Journal of Natural Sciences and Mathematics Research Vol 8, No 2 (2022): December
Publisher : Faculty of Science and Technology, Universitas Islam Negeri Walisongo Semarang

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21580/jnsmr.2022.8.2.12778

Abstract

Banach contraction mapping has main role in nonlinear analysis courses and has been modified to get new kind of generalizations in some abstract spaces to produce many fixed point theory. Fixed point theory has been proved in partial metric spaces and b-metric spaces as generalizations of metric spaces to obtain new theorems. In addition, using modified of contraction mapping we get some fixed point that have been used to solve differential equations or integral equations, and have many applications. Therefore, this area is actively studied by many researchers. The goal of this article is present and prove some fixed point theorems for extension of contraction mapping in α, β partial b-metric spaces. In this research, we learn about notions of b-metric spaces and partial metric that are combined to generated partial b-metric spaces from many literatures. Afterwards, generalizations are made to get α, β partial b-metric spaces. Using the properties of convergence, Cauchy sequences, and notions of completeness in α, β partial b-metric spaces, we prove some fixed point theorem. Fixed point theory that we generated used C-contraction mapping and its generalizations with some conditions. Existence and uniqueness of fixed point raised for some restrictions of α, β conditions. Some corollaries of main results are also proved. Our main theorems extend and increase some existence in the previous results.©2022 JNSMR UIN Walisongo. All rights reserved.
Penentuan Premi Tahunan Asuransi Jiwa Syariah Dwiguna Gabungan Berjangka n-Tahun Samsinar Samsinar; Darma Ekawati; Ahmad Ansar
Venn: Journal of Sustainable Innovation on Education, Mathematics and Natural Sciences Vol. 2 No. 2 (2023): Penerapan Pembelajaran dalam Matematika dan IPA
Publisher : Pusat Studi Bahasa dan Publikasi Ilmiah

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53696/2964-867X.101

Abstract

Sharia life insurance is an effort to help each other among customers by paying tabarru funds intended for customers who are at risk of unexpected financial losses caused by death. The purpose of this research is to determine the annual premium value of the combined -year endowment life insurance based on sharia principles with the interest rate changed to Return On Investment (ROI) which changes stochastically following the Langevin type model and obtains the ROI relationship, the term of the agreement, the amount of compensation for the annual premium of the sharia -year combined endowment term life insurance. The Monte-Carlo simulation method is applied to obtain annual premium values ​​with initial ROI values ​​equal to 0.35, 0.06 and 0.029. The results obtained in this study by applying a Monte-Carlo simulation to the calculation of the annual sharia -year joint endowment life insurance premium for joint participants are men aged 45 years, women aged 42 years, and men aged 18 years and older. A 10-year agreement with an initial ROI value of 0.35 is Rp. 6,161,275, an initial ROI value of 0.06 is Rp. 6,585,471, and an initial ROI value of 0.029 is Rp. 6,631,190. The results obtained show that the relationship between ROI, the term of the agreement and the amount of compensation for the annual endowment life insurance premium is that the smaller the initial ROI value, the greater the annual premium value.