Claim Missing Document
Check
Articles

Found 1 Documents
Search
Journal : Journal of Applied Engineering and Technological Science (JAETS)

Optimized Artificial Neural Network for the Classification of Urban Environment Comfort using Landsat-8 Remote Sensing Data in Greater Jakarta Area, Indonesia Nurwita Mustika Sari; Dony Kushardono; Mukhoriyah Mukhoriyah; Kustiyo Kustiyo; Masita Dwi Mandini Manessa
Journal of Applied Engineering and Technological Science (JAETS) Vol. 4 No. 2 (2023): Journal of Applied Engineering and Technological Science (JAETS)
Publisher : Yayasan Riset dan Pengembangan Intelektual (YRPI)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.37385/jaets.v4i2.1760

Abstract

The development of computer vision technology as a type of artificial intelligence is increasing rapidly in various fields. This method uses deep learning methods based on artificial neural networks, a well-performed algorithm in multi-parameter analysis. One of the development of computer vision models and algorithms is for a thematic digital image classification, such as environmental analysis. Remote sensing based digital image classification is one of the reliable tools for environmental quality analysis. This study aims to perform neural network optimization for the analysis of the urban environment comfort based on satellite data. The input data used are 4 types of geobiophysical indexes as urban environmental comfort parameters derived from cloud-free annual mosaics Landsat-8 remote sensing satellite data. The results obtained in this study indicate that the 1 hidden layer neural network architecture with 16 neurons for the classification of urban environmental comfort and 10 other land cover classes is quite good. The result of the classification using this optimized artificial neural network shows that the distribution of classes is very uncomfortable which dominates the Greater Jakarta area and its surroundings. For other classes in the study area, some are uncomfortable and rather comfortable.  By using this method, we obtained a fast classification training time of 18 seconds for 145 iterations to achieve an RMS Error of 0.01, and has a fairly high classification accuracy overall 89% with a Kappa coefficient of 0.88, while the 2 hidden layer neural network architecture does not succeed in achieving convergence
Co-Authors A. Harsono Supardjo A. Harsono Supardjo Adisty Pratamasari Agustinus Harsono Supardjo Angga Kurniawansyah Angga Kurniawansyah Anisya Feby Efriana Aris Poniman Aris Poniman K Ariyo Kanno Atriyon Julzarika Aulia Puji Hartati Devica Natalia Br. Ginting Dewi Susiloningtyas Dini Nuraeni Dony Kushardono Dwi Hastuti Eghbert Elvan Ampou Faisal Hamzah Farida Ayu Fathia Hashilah Gathot Winarso Gathot Winarso Gigih Giarrastowo Gigih Girrastowo Glendy Somae Haeropan Daniko Putra Heinrich Rakuasa Herianto Herianto Hermawan Setiawan Indira Indira Iqbal Putut Ash Sidik Kartika Kusuma Wardani Kartika Pratiwi Koichi Yamamoto Kuncoro Teguh Setiawan Kuncoro Teguh Setiawan Kustiyo Kustiyo Mangapul P. Tambunan Masahiko Sekine Muhammad Haidar Muhammad Haidar Muhammad Rafi Andhika Pratama Mukhoriyah Mukhoriyah Mutia Kamalia Mukhtar Nana Suwargana Nanin Anggraini Nanin Anggraini Nanin Anggraini Ni Ketut Feny Permatasari Niken Anissa Putri Nurina Rachmita Nurina Rachmita Nurwita Mustika Sari Nurwita Mustika Sari Nurwita Mustika Sari Nuryani Widagti Pramudhian Firdaus Rahmatia Susanti Rokhmatulloh Rokhmatulloh Rokhmatuloh Rokhmatuloh Rudy Parlindungan Siahaan Rudy Parluhutan Tambunan S Supriatna S Supriatna S. Supriatna S. Supriatna Setiadi, Hafid Sri Fauza Pratiwi Sri Fauza Pratiwi Supriatna Supriatna Supriatna Supriatna Supriatna Supriatna Supriatna Supriatna Supriatna Supriatna Supriyadi, Asep Adang Surahman Surahman Syamsu Rosid Syamsu Rosid Syamsu Rosid Syifa Wismayati Adawiah Takaya Higuchi Tambunan, Mangapul Parlindungan Tia Pramudiyasari Tsuyoshi Imai Wikanti Asriningrum Wikanti Astriningrum Yoniar Hufan Ramadhani