Claim Missing Document
Check
Articles

Estimated Emplacement Temperatures for a Pyroclastic Deposits from the Sundoro Volcano, Indonesia, using Charcoal Reflectance Analyses Agung Harijoko; Nanda Ayu Safira Mariska; Ferian Anggara
Indonesian Journal on Geoscience Vol. 5 No. 1 (2018)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.5.1.1-11

Abstract

DOI: 10.17014/ijog.5.1.1-11This study applies the charcoalification measurement method to infer the emplacement temperature of pyroclastic flow deposits erupted from the Sundoro Volcano, Indonesia. This pyroclastic flow partially covered the Liyangan archeological site, a site where Hindu temples were constructed approximately 1,000 years ago. Five samples of charcoal collected from this area were analyzed for reflectance and elemental composition. Charcoalification temperatures were determined based on mean random optical reflectance values (Ro) plotted on published Ro-Temperature curves. Charcoalification temperatures were also estimated using a published formula based on the charcoal’s hydrogen to carbon (H/C) ratio. These two methods for determining pyroclastic flow deposition temperatures indicated that the pyroclastic deposits that entombed the Liyangan archeological site ranged from 295° to 487°C when they were deposited. This study used very simple, rapid, precise, and low-cost methods of charcoalification temperature measurement to infer the emplacement temperature of a pyroclastic deposit. This estimation procedure could be applied widely to predict emplacement temperatures in volcanic area in Indonesia to enhance volcanic hazard mitigation.
Magma Evolution of Lasem and Senjong Volcanic Complex: High-K Magmatism in Sunda Arc, Indonesia Haryo Edi Wibowo; Agung Harijoko; Mradipta Lintang Alifcanta Moktikanana; Mohammad Yazid Abdillah
Indonesian Journal on Geoscience Vol. 9 No. 1 (2022)
Publisher : Geological Agency

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.17014/ijog.9.1.131-145

Abstract

DOI:10.17014/ijog.9.1.131-145Lasem and Senjong Volcanic Complex (LSVC) is one of four Quaternary volcanic complexes with high-K magmatism distributed in the northern coast of Central Java. This research aims to understand the magmatic evolution of the volcanic complex. Morphostratigraphy analysis and field observation show twelve pyroclastic density flow units in Lasem Volcano, distributed mainly in the northern to eastern flanks, but minor occurrences in the southern and western flanks. Meanwhile, nine lava flow units of Lasem are concentrated on the south flank of the volcano. Lasem stratovolcano is attributed to four lava domes distributed on the northern and southern flanks. Senjong Volcano comprises one lava flow and four lava domes. Rocks of LSVC are composed of plagioclase, K-feldspar, hornblende, clinopyroxene, and opaque minerals embedded in the groundmass of volcanic glass and microlite. These calc-alkaline rocks range from basaltic trachyandesite to trachyte in composition. The magma of LSVC can further be grouped into High K/Rb and Low K/Rb types, which dominate the Lasem and Senjong Volcano products, respectively. These two magma types consistently show divergent trends in K/Rb and Rb/Nb plots against increasing silica, indicating distinct differentiation processes of similar magma source.
Source Determination of Debris Avalanche Deposit based on the Morphology and Distribution of Hummocky Hills on the Northeastern Flank of G. Sundoro and G. Sumbing, Central Java, Indonesia Rahayu, Eti; Wibowo, Haryo Edi; Moktikanana, Mradipta Lintang Alifcanta; Setianto, Agung; Harijoko, Agung
Indonesian Journal of Geography Vol 55, No 3 (2023): Indonesian Journal of Geography
Publisher : Faculty of Geography, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/ijg.88213

Abstract

The presence of hummocky hills as a typical product of debris avalanche deposits is prominently visible in the northeastern flank of G. Sundoro and G. Sumbing, Temanggung, Central Java. In an attempt to better understand the past behavior of both G. Sundoro and G. Sumbing, we identify the source of the debris avalanche deposit. Interpretation is performed on the basis of the assumption of two possible sector collapse sources, i.e., G. Sundoro and G. Sumbing. The Sumbing source scenario is assumed as freely spreading type considering 1) distribution of the hummocky hills are relatively on the northeastern flank of the volcano, and 2) the present crater structure on the summit of the volcano which is opening to the northeast. The Sundoro source scenario is assumed as valley-filling type considering the distribution of the hummocky hills are relatively on the eastern flank of Sundoro extended to the far distal area and bounded by older high topography of G. Sumbing and North Serayu Mountains. The source identification was done on the basis of field observation of the deposit lithological characteristics combined with image analysis, including hummocky hills morphometry, displacement angle, and spatial distribution. Image analysis identifies approximately 645 hummocky hills ranging from 1,851 mz to 623,828 mz and average of 23,482 m2. Petrographic analysis of 5 representative block lava samples shows variation of olivine basalt, pyroxene andesite, to hornblende andesite. The results show that big size hummocky hills dominate the western side, while small size on the east. Displacement angle varied following the valley orientation with typical downslope topography. These suggested that the hummocky hills were originated from G. Sundoro as a valley-filling debris avalanche deposit.
Identification and distribution of fluoride in Singkep Island, Lingga Regency, Riau Islands Razi, Faizal; Hendrayana, Heru; Harijoko , Agung
Journal of Degraded and Mining Lands Management Vol. 11 No. 4 (2024)
Publisher : Brawijaya University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.15243/jdmlm.2024.114.6185

Abstract

The consumption of fluoride below the safe limit can result in dental caries, while high concentrations can lead to fluorosis, which can potentially impair the body's systems. One geological factor that influences the concentration of fluoride in water is the type of rock through which the water passes, including granite and its weathering products. The area is located within the Tandjungbuku Formation, which is predominantly composed of granite rock and contains several areas with Mining Business Permits (IUP) for commodities such as silica sand. This research serves as a form of mitigation in response to mining activities, post-mining, and the development of an industrial area. One anticipated impact is an increase in fluoride concentration in the research area, originating from both natural geological processes and human activities. The investigation involved geological mapping, petrographic analysis, XRD, and XRF analysis. Water sampling was conducted for both surface water and groundwater from wells in Resang Tandjungbuku Village. The research area consists of two rock units: granite, which acts as a non-aquifer layer, and colluvial deposits, which function as a free aquifer. Petrographic analysis identified minerals associated with fluoride, such as plagioclase, amphibole, and biotite. This was supported by XRD analysis with the presence of biotite, muscovite and kaoline minerals. XRF results revealed fluoride values in granite rock at 0.23% or 2300 ppm, further confirming granite as a source of fluoride. Analysis of fluoride in surface water showed values ranging from 0.01 to 4.24 mg/L, while groundwater consistently had a value of 0.01 mg/L.
Magmatic Evolution of Dago Volcano, West Java, Indonesia Adimedha, Tyto Baskara; Harijoko, Agung; Handini, Esti; Sukadana, I Gde; Syaeful, Heri; Ciputra, Roni Cahya; Rosianna, Ilsa; Indrastomo, Frederikus Dian; Pratiwi, Fadiah; Rachael, Yoshi
EKSPLORIUM Vol 44, No 1 (2023): May 2023
Publisher : Badan Riset dan Inovasi Nasional

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.55981/eksplorium.2023.6873

Abstract

Dago Volcano is a product of Miocene Sunda Arc volcanism located southeast of the capital city of Jakarta. The morphological change from flat lava flow to steeper lava morphology implies a process of magma evolution under Dago Volcano. This research provides an overview of the magma evolution that occurs on this volcano. The methods used include volcanostratigraphic analysis, petrographic analysis, mineral chemistry, and whole-rock geochemistry. The volcanostratigraphy of Dago Volcano is composed of two eruption centers and a flank eruption forming lava and cinder cones products. The mineralogical associations of Dago Volcano products include plagioclase, olivine, and clinopyroxene. The mineral textures of Dago edifices show zoning, sieve, and reaction rims textures. Geochemically, the Dago Volcano product has a magma affinity of med-K calc-alkaline with quite high levels of MgO, Ni, and Cr approaching the characteristics of primitive magma. The magma evolution process of Dago Volcano includes fractional crystallization and magma mixing which originates from the same magma source.
Volume Estimation of the Thickest Scoriaceous Tephra-Fall Deposits on the South-Southeastern Flank of Mt. Raung Wibowo, Haryo Edi; Harijoko, Agung; Cahyani, Sherinna Mega; Moktikanana, Mradipta Lintang Alifcanta; Prawira Sari, Shafa Hadaina
Journal of Applied Geology Vol 8, No 2 (2023)
Publisher : Geological Engineering Department Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/jag.80866

Abstract

Thick scoriaceous tephra-fall deposits are widely distributed in the south to the southeast flank of Mt. Raung, indicating the existence of past large explosive eruptions. The deposits are relatively young as the deposits are situated near the surface. Scoriaceous tephra-fall deposits can be divided into four layers from bottom to top, Scoria Fall 1, Scoria Fall 2, Scoria Fall 3, and Scoria Fall 4. There is no time gap between these layers, as evidenced by the deposits not being separated by any weathered layer or soil, suggesting that the deposits represent an eruptive product of a single active period. We estimated the volume of the deposits using isopach maps following Weibull method to identify the magnitude of the eruption. We limited the estimation only to Scoria Fall 2 and Scoria Fall 3 deposits which were consistently exposed on 13 and 9 observation points, respectively. The volume of Scoria Fall 2 is ~0.54 km3 and Scoria Fall 3 is ~0.26 km3 making the total volume of 0.8 km3 (VEI 4).
Spatial Analysis to Determine the Geothermal Potential Index: The Case Study of Dieng Geothermal Complex Dwi Wahyu Hardiyanto; Agung Setianto; Agung Harijoko
Jurnal Geosains dan Remote Sensing Vol 5 No 2 (2024): JGRS Edisi November
Publisher : Department of Geophysical Engineering, Faculty of Engineering, University of Lampung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.23960/jgrs.ft.unila.293

Abstract

The exploration is the activity of search areas that have the potential natural resources. Such as the exploration of geothermal potential. It can be using of spatial analysis. Spatial analysis can be base modeling of the geothermal potential in the research area. The analytic hierarchy process (AHP) is a fundamental analysis of the modeling data, where the comparison matrix from the analysis like surface temperature, lineament, and eruption center. The result of modeling in the Dieng volcanic complex has identified as the geothermal potential area. The potential area is around of G. Pakuwaja, G. Pangonan-Merdada, and G. Pagerkandang. So that the integration method of the modeling can be used as the method of the geothermal exploration activities.
Epistemologi Lokal Masyarakat Desa Nemberala, Rote Barat dalam Kegiatan “Makameting” Gloria Bayu Nusa Prayuda; Agung Harijoko
Jurnal Pengabdian, Riset, Kreativitas, Inovasi, dan Teknologi Tepat Guna Vol 2 No 1 (2024): Mei
Publisher : Direktorat Pengabdian kepada Masyarakat

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.22146/parikesit.v2i1.9523

Abstract

This study aims to examine epistemological elements in the "Makameting" tradition of the people of Nemberala Village, West Rote. Makameting is an activity of the coastal community of Rote in fulfilling their daily needs, by collecting food on the beach when the sea water recedes. The Makameting tradition has been carried out for years, it has become a habit in the daily life of the Rote people. This study uses a descriptive--nterpretative method, with literatures and interview with locals as reference for writing. The results show that there are epistemic elements that provide situational preconditions for makameting activities, such as biological, geographic and cultural elements. The biological in makameting is how society as beings who have agency to fulfill their life needs and to preserve their environment, the geographical element found is how the coastal landscape determines the social dynamics of the community, while the cultural element is how the sea is viewed anthropomorphically and the daily life of makameting itself.
Co-Authors Abdissalam, Rus Adimedha, Tyto Baskara Agung Setianto Agus Hendratno Agus Winarno Agus Winarno Akira Imai Al-Furqan, Reza Anggun Purnama Edra Arifudin Idrus Asmoro Widagdo Asmoro Widagdo Asmoro Widagdo Asmoro Widagdo Asmoro Widagdo, Asmoro Ayu Safira Mariska, Nanda Ayu Safira Mariska, Nanda Azmin Nuha Bachtiar Wahyu Mutaqin Bronto, Sutikno Cahyani, Sherinna Mega Ciputra, Roni Cahya Donatus Hendra Amijaya Doni Prakasa Eka Putra Dwi Wahyu Hardiyanto Eko Bayu Purwasatriya Esti Handini Ferian Anggara Franz Michael Meyer Franz Michael Meyer, Franz Michael Frederikus Dian Indrastomo, Frederikus Dian FX Anjar Tri Laksono Gloria Bayu Nusa Prayuda Harli Talla Haryo Edi Wibowo Hasenaka, Toshiaki Heri Syaeful Herlan Darmawan Heru Hendrayana Htun, Tin May Huzaely Latief Sunan I Gde Sukadana I Gde Sukadana I Wayan Warmada Imai, Akira Indra Agus Riyanto Indranova Suhendro Irwan Endrayanto, Irwan Irzal Nur, Irzal Jaingot A. Parhusip Jaingot A. Parhusip, Jaingot A. Juhri, Saefudin Koichiro Watanabe Koichiro Watanabe Koichiro Watanabe Koichiro Watanabe, Koichiro Kotaro Yonezu Kotaro Yonezu Lucas Donny Setijadji Mamay Surmayadi Martadiastuti, Vanadia Maulana Rizki Aditama Miftahul Huda Mohammad Yazid Abdillah Moktikanana, Mradipta Lintang Alifcanta Mori, Yasushi Mradipta Lintang Alifcanta Moktikanana Myo Min Tun Myo Min Tun Myo Min Tun Nanda Ayu Safira Mariska Nia Haerani Nugroho Imam Setiawan Nurkhamim Nurkhamim Okki Verdiansyah Okki Verdiansyah Okki Verdiansyah Oo, Toe Naing Pratiwi, Fadiah Prawira Sari, Shafa Hadaina Purnama Edra, Anggun Putranto, Sapto Rachael, Yoshi Rachmad Setijadi Raditya Jati Rahayu, Eti Razi, Faizal Reza Al-Furqan Rodhie Saputra Rosianna, Ilsa Rus Abdissalam Rus Abdissalam Ruslisan Ruslisan Sachihiro Taguchi Saefudin Juhri Sapto Putranto Saputra, Rodhie Sindern, Sven Subagyo Pramumijoyo Subagyo Pramumijoyo Subagyo Pramumijoyo Subagyo Pramumijoyo Subagyo Pramumijoyo Subagyo Pramumijoyo, Subagyo Suratman Suratman Suryanto, Wiwit Sutarto Sutarto Sutarto Sutarto Sutarto Sutarto Sutikno Bronto Sutikno Bronto Sven Sindern Syarifudin Syarifudin Taguchi, Sachihiro Tin May Htun Toe Naing Oo Toe Naing Oo Toshiaki Hasenaka Tun, Myo Min Vanadia Martadiastuti Wahyudi Wahyudi Watanabe, Koichiro Wikanti Asriningrum Yasushi Mori Yonezu, Kotaro Yonezu, Kotaro