Bambang Hidayat
Program Studi Teknik Telekomunikasi Fakultas Teknik Elektro – Universitas Telkom Jln. Telekomunikasi Dayeuhkolot Bandung, Indonesia

Published : 14 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 14 Documents
Search

Klasifikasi Grade Telur Ayam Negeri secara non- Invasive menggunakan Convolutional Neural Network IBRAHIM, NUR; SA’IDAH, SOFIA; HIDAYAT, BAMBANG; DARANA, SJAFRIL
ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika Vol 10, No 2: Published April 2022
Publisher : Institut Teknologi Nasional, Bandung

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26760/elkomika.v10i2.297

Abstract

ABSTRAKTelur ayam negeri merupakan salah satu sumber protein yang banyak dikonsumsi masyarakat Indonesia. Untuk menjaga kualitas telur ayam negeri yang beredar di Indonesia, diperlukan sistem yang mampu mengidentifikasi grade telur ayam dan mudah digunakan oleh masyarakat. Penelitian sebelumnya telah mengembangkan sistem pengklasifikasian grade telur ayam negeri secara invasive dengan tingkat akurasi 80%, namun sistem ini membutuhkan sampel telur yang dipecahkan sehingga setiap sampel telur tersebut tidak dapat disimpan dalam waktu lama. Oleh karena itu, penelitian ini mengembangkan sistem klasifikasi grade telur ayam tanpa perlu memecahkan sampel telur ayam (non-invasive). Dengan menggunakan metode Convolutional Neural Network (CNN), sistem mampu mengidentifikasi grade telur ayam negeri pada tingkat akurasi 85,86% dengan arsitektur LeNet-5, optimizer Adam, learning rate 0,001, dan epoch 50.Kata kunci: telur ayam negeri, non-invasive, convolutional neural network, LeNet-5 ABSTRACTLocal Chicken egg are one of the sources of protein that is widely consumed by the people of Indonesia. To maintain the quality of local chicken egg in the market, a system that can identified chicken egg’s grade and easy to use is needed. Previous research has developed an invasive chicken egg’s grade classification system with 80% accuracy. However, the system required egg sample to be cracked so the egg sample can’t be stored for too long. This research develop a non-invasive chicken egg’s grade classification system, which doesn’t require egg sample to be cracked. By using Convolutional Neural Network (CNN), system can identified chicken egg’s grade at 85,86% accuracy with LeNet-5 architecture, Adam optimizer, learning rate 0,001, and epoch 50.Keywords: local chicken egg, non-invasive, convolutional neural network, LeNet-5
Audio Steganography using Modified Enhanced Least Significant Bit in 802.11n Setiaji, Hartoko Carolus Ferdy; Tjondronegoro, Suhartono; Hidayat, Bambang
JMECS (Journal of Measurements, Electronics, Communications, and Systems) Vol. 1 No. 1 (2015): JMECS
Publisher : Universitas Telkom

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25124/jmecs.v1i1.1479

Abstract

Steganography is a technique to improve the security of data, which is by inserting messages or confidential information using a medium called the host or carrier or cover. A wide variety of digital media can be used as a host, among others audio, image, video, text, header, IP datagram, and so forth. For audio steganography, the embedded audio is called stego-audio. Steganography can be cracked by using steganalysis. By exploiting the weaknesses of each steganography method. Many steganography method has been developed to increase its performance. This work proposed audio steganography scheme called Modified Enhanced Least Significant Bit (MELSB) which is modified version of Enhanced Least Significant Bit (ELSB). This method using Modified Bit Selection Rule to increase SNR and robustness of stego-audio. SNR result after applying MELSB scheme is increased. MELSB scheme also increase robustness of stego-audio. MELSB still work fine until amplification level 1.07. MELSB also work fine against noise addition better than ELSB and LSB. It give BER and CER with value 0 at SNR 33 dB. MELSB work fine in real-time condition on 802.11n WLAN if there is no transcoding and noise addition between sender’s and recipient’s computer.
Deteksi Pulpitis Menggunakan Machine Learning Dalam Lingkup Optimalisasi Frontend Sangkala, Muh Aslam Mahdi; Saidah, Sofia; Hidayat, Bambang
eProceedings of Engineering Vol. 11 No. 6 (2024): Desember 2024
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Studi ini ditujukan untuk mengembangkan dan melaksanakan antarmuka frontend untuk sistem deteksi Pulpitis Reversibel yang berbasis web. Fokus utama dari penelitian ini adalah menciptakan antarmuka yang intuitif, responsif, dan mudah digunakan, sehingga memungkinkan pengguna melakukan tes pemeriksaan gigi melalui perekaman dan pengunggahan audio. Penggunaan teknologi HTML, CSS, dan JavaScript digunakan untuk membangun fitur-fitur utama, termasuk perekaman langsung, pengunggahan file audio, dan tampilan hasil deteksi. Hasil deteksi ditampilkan dalam format visual yang jelas, memberikan umpan balik langsung mengenai kondisi kesehatan gigi pengguna. Penelitian ini menunjukkan bahwa desain frontend yang baik dapat secara signifikan meningkatkan pengalaman pengguna dan akurasi interaksi dalam aplikasi web, menjadikannya alat potensial untuk skrining awal Pulpitis Reversibel. Kata kunci— CSS, Deteksi, Frontend, Gigi, HTML, JavaScript, Pulpitis, Section.
Deteksi Pulpitis Menggunakan MFCC dan CNN1D Dalam Lingkup Penggunaan Flask Sebagai Backend Hermina, Nanda Putri; Sa’idah, Sofia; Hidayat, Bambang
eProceedings of Engineering Vol. 11 No. 6 (2024): Desember 2024
Publisher : eProceedings of Engineering

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Pulpitis adalah peradangan pada jaringan pulpa gigi yang dapat disebabkan oleh berbagai faktor seperti infeksi bakteri, trauma pada gigi, atau kerusakan gigi. Sakit gigi bisa sangat mengganggu aktivitas seseorang. Ketika seseorang mengalami sakit gigi mereka mungkin sulit untuk berkonsentrasi, berbicara atau bahkan makan dengan nyaman. Sebelum terjadi kerusakan gigi yang lebih parah maka kami membuat alat yang dapat mendeteksi pulpitis dengan biaya yang terjangkau dan realtime yaitu deteksi pulpitis menggunakan sinyal suara dengan algoritma machine learning dengan ekstraksi MFCC dan CNN 1D. Model ini dapat mendeteksi gigi yang sehat maupun gigi yang mengalami pulpitis dengan akurasi 92%. Kata kunci— Backend, CNN, Machine learning, MFCC, Pulpitis, Website.